Skip to main content
Log in

A description of the complete mitochondrial genomes of Amphiporus formidabilis, Prosadenoporus spectaculum and Nipponnemertes punctatula (Nemertea: Hoplonemertea: Monostilifera)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We sequenced the complete mitochondrial genomes (mitogenomes) of three Hoplonemertea species, Amphiporus formidabilis, Prosadenoporus spectaculum and Nipponnemertes punctatula, which are 14,616, 14,655 and 15,354 bp in length, respectively. Each of the three circular mitogenomes consists of 37 typical genes and some non-coding regions. The nucleotide composition of the coding strand is biased toward T, almost a half of total nucleotides in these mitogenomes. There are many poly-T tracts across these mitogenomes, which exhibit T-number variation within different clones of protein-coding genes, mainly resulting from false PCR amplification. The major non-coding regions have tandem repeat motifs and hairpin-like structures that may be associated with the initiation of replication or transcription. Data published to date for nemerteans show that Palaeonemertea species usually bear the largest mitogenomes, while representatives in the more recently derived Distromatonemertea clade bear the smallest ones; and that the gene arrangement of mitogenomes seems to be variable within the phylum Nemertea, but stable within either of Heteronemertea and Hoplonemertea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

mitogenome:

Mitochondrial genome

atp6 and atp8 :

ATP synthase subunits 6 and 8

cytb :

Cytochrome b

cox1-3 :

Cytochrome c oxidase subunits I–III

nad16 and nad4L :

NADH dehydrogenase subunits 1–6 and 4L

rrnL and rrnS :

The large and small subunits of ribosomal RNA

trnX :

Transfer RNA molecules with the one-letter code of corresponding amino acid

DHU loop:

Dihydrouridine loop

%INUC:

Percent of identical nucleotides

mNCR:

Major non-coding region

PCR:

Polymerase chain reaction

kb:

Kilobase

bp:

Base pair

References

  1. Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216

    Article  CAS  PubMed  Google Scholar 

  2. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27(8):1767–1780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102(23):8369–8374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ki JS, Hwang DS, Park TJ, Han SH, Lee JS (2010) A comparative analysis of the complete mitochondrial genome of the Eurasian otter Lutra lutra (Carnivora; Mustelidae). Mol Biol Rep 37(4):1943–1955

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Yue B, Jiang W, Song Z (2009) The complete mitochondrial genome of rock carp Procypris rabaudi (Cypriniformes: Cyprinidae) and phylogenetic implications. Mol Biol Rep 36(5):981–991

    Article  CAS  PubMed  Google Scholar 

  6. Boore JL (2001) Complete mitochondrial genome sequence of the polychaete annelid Platynereis dumerilii. Mol Biol Evol 18(7):1413–1416

    Article  CAS  PubMed  Google Scholar 

  7. Boore JL, Brown WM (1994) Complete DNA sequence of the mitochondrial genome of the black chiton, Katharina tunicata. Genetics 138(2):423–443

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Rokas A, Holland PW (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15(11):454–459

    Article  PubMed  Google Scholar 

  9. Boore JL (2006) The use of genome-level characters for phylogenetic reconstruction. Trends Ecol Evol 21(8):439–446

    Article  PubMed  Google Scholar 

  10. Masta SE (2010) Mitochondrial rRNA secondary structures and genome arrangements distinguish chelicerates: comparisons with a harvestman (Arachnida: Opiliones: Phalangium opilio). Gene 449(1–2):9–21

    Article  CAS  PubMed  Google Scholar 

  11. Yokobori S, Iseto T, Asakawa S, Sasaki T, Shimizu N, Yamagishi A, Oshima T, Hirose E (2008) Complete nucleotide sequences of mitochondrial genomes of two solitary entoprocts, Loxocorone allax and Loxosomella aloxiata: implications for lophotrochozoan phylogeny. Mol Phylogenet Evol 47(2):612–628

    Article  CAS  PubMed  Google Scholar 

  12. Nesnidal MP, Helmkampf M, Bruchhaus I, Hausdorf B (2011) The complete mitochondrial genome of Flustra foliacea (Ectoprocta, Cheilostomata)—compositional bias affects phylogenetic analyses of lophotrochozoan relationships. BMC Genomics 12:572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Bourlat SJ, Nielsen C, Economou AD, Telford MJ (2008) Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom. Mol Phylogenet Evol 49(1):23–31

    Article  CAS  PubMed  Google Scholar 

  14. Turbeville JM, Smith DM (2007) The partial mitochondrial genome of the Cephalothrix rufifrons (Nemertea, Palaeonemertea): characterization and implications for the phylogenetic position of Nemertea. Mol Phylogenet Evol 43(3):1056–1065

    Article  CAS  PubMed  Google Scholar 

  15. Chen H-X, Sundberg P, Norenburg JL, Sun S-C (2009) The complete mitochondrial genome of Cephalothrix simula (Iwata) (Nemertea: Palaeonemertea). Gene 442(1–2):8–17

    Article  CAS  PubMed  Google Scholar 

  16. Podsiadlowski L, Braband A, Struck TH, von Dohren J, Bartolomaeus T (2009) Phylogeny and mitochondrial gene order variation in Lophotrochozoa in the light of new mitogenomic data from Nemertea. BMC Genomics 10:364

    Article  PubMed Central  PubMed  Google Scholar 

  17. Xu D-L, Chen H-X, Shi W, Sun S-C (2012) Complete mitochondrial genome of the nemertean Lineus alborostratus (Nemertea: Heteronemertea). Period Ocean Univ China 42(6):085–092 (in Chinese with English summary)

    CAS  Google Scholar 

  18. Chen H-X, Sun S-C, Sundberg P, Ren WC, Norenburg JL (2012) A comparative study of nemertean complete mitochondrial genomes, including two new ones for Nectonemertes cf. mirabilis and Zygeupolia rubens, may elucidate the fundamental pattern for the phylum Nemertea. BMC Genomics 13:139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Cheng S, Chang SY, Gravitt P, Respess R (1994) Long PCR. Nature 369(6482):684–685

    Article  CAS  PubMed  Google Scholar 

  20. Chen H-X, Sundberg P, Wu H-Y, Sun S-C (2011) The mitochondrial genomes of two nemerteans, Cephalothrix sp. (Nemertea: Palaeonemertea) and Paranemertes cf. peregrina (Nemertea: Hoplonemertea). Mol Biol Rep 38(7):4509–4525

    Article  CAS  PubMed  Google Scholar 

  21. Riepsamen AH, Blok VC, Phillips M, Gibson T, Dowton M (2008) Poly(T) variation within mitochondrial protein-coding genes in Globodera (Nematoda: Heteroderidae). J Mol Evol 66(3):197–209

    Article  CAS  PubMed  Google Scholar 

  22. Riepsamen AH, Gibson T, Rowe J, Chitwood DJ, Subbotin SA, Dowton M (2011) Poly(T) variation in heteroderid nematode mitochondrial genomes is predominantly an artefact of amplification. J Mol Evol 72(2):182–192

    Article  CAS  PubMed  Google Scholar 

  23. Gibson T, Farrugia D, Barrett J, Chitwood DJ, Rowe J, Subbotin S, Dowton M (2011) The mitochondrial genome of the soybean cyst nematode Heterodera glycines. Genome 54(7):565–574

    Article  CAS  PubMed  Google Scholar 

  24. Hall J (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  25. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92(4):371–373

    Article  CAS  PubMed  Google Scholar 

  27. Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41(3):353–358

    Article  CAS  PubMed  Google Scholar 

  28. Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21(4):537–539

    Article  CAS  PubMed  Google Scholar 

  29. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Boore JL, Brown WM (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev 8(6):668–674

    Article  CAS  PubMed  Google Scholar 

  33. Xie Y, Zhang Z, Wang C, Lan J, Li Y, Chen Z, Fu Y, Nie H, Yan N, Gu X, Wang S, Peng X, Yang G (2011) Complete mitochondrial genomes of Baylisascaris schroederi, Baylisascaris ailuri and Baylisascaris transfuga from giant panda, red panda and polar bear. Gene 482(1–2):59–67

    Article  CAS  PubMed  Google Scholar 

  34. Ki JS, Park HG, Lee JS (2009) The complete mitochondrial genome of the cyclopoid copepod Paracyclopina nana: a highly divergent genome with novel gene order and atypical gene numbers. Gene 435(1–2):13–22

    Article  CAS  PubMed  Google Scholar 

  35. Yuan Y, Li Q, Yu H, Kong L (2012) The complete mitochondrial genomes of six heterodont bivalves (Tellinoidea and Solenoidea): variable gene arrangements and phylogenetic implications. PLoS ONE 7(2):e32353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Campbell NJ, Barker SC (1999) The novel mitochondrial gene arrangement of the cattle tick, Boophilus microplus: fivefold tandem repetition of a coding region. Mol Biol Evol 16(6):732–740

    Article  CAS  PubMed  Google Scholar 

  37. Uda K, Komeda Y, Koyama H, Koga K, Fujita T, Iwasaki N, Suzuki T (2011) Complete mitochondrial genomes of two Japanese precious corals, Paracorallium japonicum and Corallium konojoi (Cnidaria, Octocorallia, Coralliidae): notable differences in gene arrangement. Gene 476(1–2):27–37

    Article  CAS  PubMed  Google Scholar 

  38. Rand DM (1993) Endotherms, ectotherms, and mitochondrial genome-size variation. J Mol Evol 37(3):281–295

    Article  CAS  PubMed  Google Scholar 

  39. Macey JR, Larson A, Ananjeva NB, Fang Z, Papenfuss TJ (1997) Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol Biol Evol 14(1):91–104

    Article  CAS  PubMed  Google Scholar 

  40. Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19(12):709–716

    Article  CAS  PubMed  Google Scholar 

  41. Thollesson M, Norenburg JL (2003) Ribbon worm relationships: a phylogeny of the phylum Nemertea. Proc Biol Sci 270(1513):407–415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Andrade SCS, Strand M, Schwartz M, Chen HX, Kajihara H, Von Döhren J, Sun SC, Junoy J, Thiele M, Norenburg JL, Turbeville JM, Giribet G, Sundberg P (2012) Disentangling ribbon worm relationships: multi-locus analysis supports traditional classification of the phylum Nemertea. Cladistics 27:1–19

    Google Scholar 

  43. Aledo JC, Valverde H, de Magalhaes JP (2012) Mutational bias plays an important role in shaping longevity-related amino acid content in mammalian mtDNA-encoded proteins. J Mol Evol 74(5–6):332–341

    Article  CAS  PubMed  Google Scholar 

  44. Francino MP, Ochman H (1997) Strand asymmetries in DNA evolution. Trends Genet 13(6):240–245

    Article  CAS  PubMed  Google Scholar 

  45. Hassanin A, Leger N, Deutsch J (2005) Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences. Syst Biol 54(2):277–298

    Article  PubMed  Google Scholar 

  46. Armstrong KF, Ball SL (2005) DNA barcodes for biosecurity: invasive species identification. Philos Trans R Soc Lond B Biol Sci 360(1462):1813–1823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Jacob JE, Vanholme B, Van Leeuwen T, Gheysen G (2009) A unique genetic code change in the mitochondrial genome of the parasitic nematode Radopholus similis. BMC Res Notes 2:192

    Article  PubMed Central  PubMed  Google Scholar 

  48. Brauer A, Kurz A, Stockwell T, Baden-Tillson H, Heidler J, Wittig I, Kauferstein S, Mebs D, Stocklin R, Remm M (2012) The mitochondrial genome of the venomous cone snail Conus consors. PLoS ONE 7(12):e51528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Wolff JN, Shearman DC, Brooks RC, Ballard JW (2012) Selective enrichment and sequencing of whole mitochondrial genomes in the presence of nuclear encoded mitochondrial pseudogenes (numts). PLoS ONE 7(5):e37142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290(5806):470–474

    Article  CAS  PubMed  Google Scholar 

  51. Lavrov DV, Brown WM, Boore JL (2000) A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proc Natl Acad Sci USA 97(25):13738–13742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Supek F, Vlahovicek K (2005) Comparison of codon usage measures and their applicability in prediction of microbial gene expressivity. BMC Bioinformatics 6:182

    Article  PubMed Central  PubMed  Google Scholar 

  53. Bachtrog D (2007) Reduced selection for codon usage bias in Drosophila miranda. J Mol Evol 64(5):586–590

    Article  CAS  PubMed  Google Scholar 

  54. Romero H, Zavala A, Musto H (2000) Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res 28(10):2084–2090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Sharp PM, Matassi G (1994) Codon usage and genome evolution. Curr Opin Genet Dev 4(6):851–860

    Article  CAS  PubMed  Google Scholar 

  56. Duret L, Mouchiroud D (1999) Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila and Arabidopsis. Proc Natl Acad Sci USA 96(8):4482–4487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Haen KM, Lang BF, Pomponi SA, Lavrov DV (2007) Glass sponges and bilaterian animals share derived mitochondrial genomic features: a common ancestry or parallel evolution? Mol Biol Evol 24(7):1518–1527

    Article  CAS  PubMed  Google Scholar 

  58. Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR (1992) The mitochondrial genomes of two nematodes Caenorhabditis elegans and Ascaris suum. Genetics 130(3):471–498

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Yokobori SI, Paabo S (1995) tRNA editing in metazoans. Nature 377(6549):490

    Article  CAS  PubMed  Google Scholar 

  60. Tomita K, Ueda T, Watanabe K (1996) RNA editing in the acceptor stem of squid mitochondrial tRNA(Tyr). Nucleic Acids Res 24(24):4987–4991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Kim KH, Eom KS, Park JK (2006) The complete mitochondrial genome of Anisakis simplex (Ascaridida: Nematoda) and phylogenetic implications. Int J Parasitol 36(3):319–328

    Article  CAS  PubMed  Google Scholar 

  62. Jacobs HT, Elliott DJ, Math VB, Farquharson A (1988) Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol 202(2):185–217

    Article  CAS  PubMed  Google Scholar 

  63. Saito S, Tamura K, Aotsuka T (2005) Replication origin of mitochondrial DNA in insects. Genetics 171(4):1695–1705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Kolpakov R, Bana G, Kucherov G (2003) mreps: Efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res 31(13):3672–3678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Wilkinson GS, Chapman AM (1991) Length and sequence variation in evening bat D-loop mtDNA. Genetics 128(3):607–617

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Arnason E, Rand DM (1992) Heteroplasmy of short tandem repeats in mitochondrial DNA of Atlantic cod Gadus morhua. Genetics 132(1):211–220

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Larizza A, Pesole G, Reyes A, Sbisa E, Saccone C (2002) Lineage specificity of the evolutionary dynamics of the mtDNA D-loop region in rodents. J Mol Evol 54(2):145–155

    Article  CAS  PubMed  Google Scholar 

  68. Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410(2):103–123

    Article  CAS  PubMed  Google Scholar 

  69. Roberti M, Polosa PL, Bruni F, Musicco C, Gadaleta MN, Cantatore P (2003) DmTTF, a novel mitochondrial transcription termination factor that recognises two sequences of Drosophila melanogaster mitochondrial DNA. Nucleic Acids Res 31(6):1597–1604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30970333; 31172046). We are grateful to Professor Robert K. Okazaki and Mr. Hai-Lin Shen for helps in collecting specimens, to Dr. Wei Shi, Dr. Hai-Xia Chen and Miss Dong-Li Xu for assisting with the analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Chun Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2014_3438_MOESM1_ESM.tif

Fig. S1. Number variation of poly-T tract within nad6 gene of Nipponnemertes punctatula. Boxes represent the correct number of T nucleotides to maintain a complete reading frame. Arrows point to T deletion/insertion. (TIFF 4806 kb)

11033_2014_3438_MOESM2_ESM.tif

Fig. S2. Alignment of the amino acids (represented by one letter) at the 3′ end of atp6 gene in nine nemertean species. The lowercase stands for the stop codon (TIFF 491 kb)

11033_2014_3438_MOESM3_ESM.tif

Fig. S3. Consensus secondary structure of trnS2 (AGN) for five hoplonemertean mitogenomes (Amphiporus formidabilis, Prosadenoporus spectaculum, Nipponnemertes punctatula, Paranemertes cf. peregrina and Nectonemertes cf. mirabilis). Capitalized bases are conserved in these species; lowercase bases are not compared (R = A/G, Y = C/T, W = A/U, K = G/U, N = A/U/G/C) (TIFF 184 kb)

11033_2014_3438_MOESM4_ESM.tif

Fig. S4. Major non-coding region of Nipponnemertes punctatula, showing the eight fragments that are predicted to form hairpin-like structures and the repeat (13 times) of the 11 bp motif GAAAGAAAAAA (highlighted). (TIFF 457 kb)

11033_2014_3438_MOESM5_ESM.tif

Fig. S5. Alignment of the gap region between cox1 and trnW in hoplonemerteans. The underlined nucleotides indicates conserved region among them. (TIFF 215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, WY., Sun, SC. A description of the complete mitochondrial genomes of Amphiporus formidabilis, Prosadenoporus spectaculum and Nipponnemertes punctatula (Nemertea: Hoplonemertea: Monostilifera). Mol Biol Rep 41, 5681–5692 (2014). https://doi.org/10.1007/s11033-014-3438-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3438-5

Keywords

Navigation