Skip to main content
Log in

An integrative AmpSeq platform for highly multiplexed marker-assisted pyramiding of grapevine powdery mildew resistance loci

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Resistance breeding often requires the introgression and tracking of resistance loci from wild species into domesticated backgrounds, typically with the goal of pyramiding multiple resistance genes, to provide durable disease resistance to breeding selections and ultimately cultivars. While molecular markers are commonly used to facilitate these efforts, high genetic diversity and divergent marker technologies can complicate marker-assisted breeding strategies. Here, amplicon sequencing (AmpSeq) was used to integrate SNP markers with dominant presence/absence markers derived from genotyping-by-sequencing and other genotyping technologies, for the simultaneous tracking of five loci for resistance to grapevine powdery mildew. SNP haploblocks defined the loci for REN1, REN2 and REN3, which confer quantitative resistance phenotypes that are challenging to measure via field ratings of natural infections. Presence/absence markers for RUN1 and REN4 were validated to predict qualitative resistance phenotypes and corresponded with previous presence/absence fluorescent electrophoretic assays. Thus, 37 AmpSeq-derived markers were identified for the five loci, and markers for REN1, REN2, REN4 and RUN1 were used for multiplexed screening and selection within diverse breeding germplasm. Poor transferability of SNP markers indicated imperfect marker-trait association in some families. Together, AmpSeq SNP haploblocks and presence/absence markers provide a high-throughput, cost-effective tool to integrate divergent technologies for marker-assisted selection and genetic analysis of introgressed disease resistance loci in grapevine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akkurt M, Welter L, Maul E, Topfer R, Zyprian E (2007) Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (Vitis vinifera L. and Vitis sp.) Mol Breeding 19(2):103–111. https://doi.org/10.1007/s11032-006-9047-9

    Article  CAS  Google Scholar 

  • Barba P, Cadle-Davidson L, Harriman J, Glaubitz JC, Brooks S, Hyma K, Reisch B (2014) Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet 127(1):73–84. https://doi.org/10.1007/s00122-013-2202-x

    Article  CAS  PubMed  Google Scholar 

  • Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thomas MR, Dry I (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet 111(2):370–377. https://doi.org/10.1007/s00122-005-2030-8

    Article  CAS  PubMed  Google Scholar 

  • Blanc S, Wiedemann-Merdinoglu S, Dumas V, Mestre P, Merdinoglu D (2012) A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew. Theor Appl Genet 125(8):1663–1675. https://doi.org/10.1007/s00122-012-1942-3

    Article  CAS  PubMed  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193. https://doi.org/10.1093/bioinformatics/19.2.185

    Article  CAS  PubMed  Google Scholar 

  • Browning BL, Browning SR (2013) Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 194(2):459–471. https://doi.org/10.1534/genetics.113.150029

    Article  PubMed  PubMed Central  Google Scholar 

  • Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81(5):1084–1097. https://doi.org/10.1086/521987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadle-Davidson L, Chicoine DR, Consolie NH (2011) Variation within and among Vitis spp. for foliar resistance to the powdery mildew pathogen Erysiphe necator. Plant Dis 95(2):202–211. https://doi.org/10.1094/Pdis-02-10-0092

    Article  Google Scholar 

  • Cadle-Davidson L, Gadoury D, Fresnedo-Ramírez J, Yang S, Barba P, Sun Q, Demmings EM, Seem R, Schaub M, Nowogrodzki A, Kasinathan H, Ledbetter C, Reisch BI (2016) Lessons from a phenotyping center revealed by the genome-guided mapping of powdery mildew resistance loci. Phytopathology 106(10):1159–1169. https://doi.org/10.1094/Phyto-02-16-0080-Fi

    Article  PubMed  Google Scholar 

  • Coleman C, Copetti D, Cipriani G, Hoffman S, Kozman P, Kovacs L, Morgante M, Testolin R, Di Gaspero G (2009) The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two central Asian grapevines. BMC Genet 10. https://doi.org/10.1186/1471-2156-10-89

  • Dalbó MA (1998) Genetic mapping, QTL analysis, and marker-assisted selection for disease resistance loci in grapes. Cornell University, Ithaca, NY

    Google Scholar 

  • Dalbó MA, Ye GN, Weeden NF, Wilcox WF, Reisch BI (2001) Marker-assisted selection for powdery mildew resistance in grapes. J Am Soc Hortic Sci 126(1):83–89

    Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, Grp GPA (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158. https://doi.org/10.1093/bioinformatics/btr330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Genova A, Almeida AM, Munoz-Espinoza C, Vizoso P, Travisany D, Moraga C, Pinto M, Hinrichsen P, Orellana A, Maass A (2014) Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants. BMC Plant Biol 14. https://doi.org/10.1186/1471-2229-14-7

  • Eibach R, Zyprian E, Welter L, Töpfer R (2007) The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis 46 (3)

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6 (5). doi:https://doi.org/10.1371/journal.pone.0019379

  • Feechan A, Anderson C, Torregrosa L, Jermakow A, Mestre P, Wiedemann-Merdinoglu S, Merdinoglu D, Walker AR, Cadle-Davidson L, Reisch B, Aubourg S, Bentahar N, Shrestha B, Bouquet A, Adam-Blondon AF, Thomas MR, Dry IB (2013) Genetic dissection of a TIR-NB-LRR locus from the wild north American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. Plant J 76(4):661–674. https://doi.org/10.1111/tpj.12327

    Article  CAS  PubMed  Google Scholar 

  • Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Topfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108(3):501–515. https://doi.org/10.1007/s00122-003-1445-3

    Article  CAS  PubMed  Google Scholar 

  • Gadoury DM, Cadle-Davidson L, Wilcox WF, Dry IB, Seem RC, Milgroom MG (2012) Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol Plant Pathol 13(1):1–16. https://doi.org/10.1111/j.1364-3703.2011.00728.x

    Article  PubMed  Google Scholar 

  • Gao F, Dai R, Pike SM, Qiu WP, Gassmann W (2014) Functions of EDS1-like and PAD4 genes in grapevine defenses against powdery mildew. Plant Mol Biol 86(4–5):381–393. https://doi.org/10.1007/s11103-014-0235-4

    Article  CAS  PubMed  Google Scholar 

  • Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One 9 (2). doi:https://doi.org/10.1371/journal.pone.0090346

  • Hoffmann S, Di Gaspero G, Kovacs L, Howard S, Kiss E, Galbacs Z, Testolin R, Kozma P (2008) Resistance to Erysiphe necator in the grapevine 'Kishmish vatkana' is controlled by a single locus through restriction of hyphal growth. Theor Appl Genet 116(3):427–438. https://doi.org/10.1007/s00122-007-0680-4

    Article  CAS  PubMed  Google Scholar 

  • Hyma KE, Barba P, Wang MH, Londo JP, Acharya CB, Mitchell SE, Sun Q, Reisch B, Cadle-Davidson L (2015) Heterozygous mapping strategy (HetMappS) for high resolution genotyping-by-sequencing markers: a case study in grapevine. PLoS One 10(8). https://doi.org/10.1371/journal.pone.0134880

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P, Public F-I (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–U465. https://doi.org/10.1038/nature06148

    Article  CAS  PubMed  Google Scholar 

  • Luby JJ, Shaw DV (2001) Does marker-assisted selection make dollars and sense in a fruit breeding program? Hortscience 36(5):872–879

    Google Scholar 

  • Mahanil SB, Lagerholm S, Garris A, Owens C, Ramming D, Cadle-Davidson L (2014) Development of molecular markers for powdery mildew resistance in grapevines. Acta Hortic 1046:91–99

    Article  Google Scholar 

  • Mahanil SB, Ramming D, Cadle-Davidson M, Owens C, Garris A, Myles S, Cadle-Davidson L (2012) Development of marker sets useful in the early selection of Ren4 powdery mildew resistance and seedlessness for table and raisin grape breeding. Theor Appl Genet 124(1):23–33. https://doi.org/10.1007/s00122-011-1684-7

    Article  CAS  PubMed  Google Scholar 

  • Marcais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27(6):764–770. https://doi.org/10.1093/bioinformatics/btr011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis - a rapid method to detect markers in specific genomic regions by using segregating populations. P Natl Acad Sci USA 88(21):9828–9832. https://doi.org/10.1073/pnas.88.21.9828

    Article  CAS  Google Scholar 

  • Migliaro D, Morreale G, Gardiman M, Landolfo S, Crespan M (2012) Direct multiplex PCR for grapevine genotyping and varietal identification. Plant Genet Resour 11(2):182–185. https://doi.org/10.1017/S1479262112000433

    Article  Google Scholar 

  • Pap D, Riaz S, Dry IB, Jermakow A, Tenscher AC, Cantu D, Olah R, Walker MA (2016) Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biol 16. doi:https://doi.org/10.1186/s12870-016-0855-8

  • Qiu WP, Feechan A, Dry I (2015) Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Hortic Res-England 2. https://doi.org/10.1038/hortres.2015.20

  • Ramming DW, Gabler F, Smilanick J, Cadle-Davidson M, Barba P, Mahanil S, Cadle-Davidson L (2011) A single dominant locus, Ren4, confers rapid non-race-specific resistance to grapevine powdery mildew. Phytopathology 101(4):502–508. https://doi.org/10.1094/Phyto-09-10-0237

    Article  PubMed  Google Scholar 

  • Reisch BI, Mahanil S, Consolie N, Luce RS, Wallace PG, Cadle-Davidson L (2014) Examination of marker-assisted selection for powdery and downy mildew resistance. Acta Hortic 1046:151–155

    Article  Google Scholar 

  • Riaz S, Boursiquot JM, Dangl GS, Lacombe T, Laucou V, Tenscher AC, Walker MA (2013) Identification of mildew resistance in wild and cultivated Central Asian grape germplasm. BMC Plant Biol 13. doi:https://doi.org/10.1186/1471-2229-13-149

  • Riaz S, Dangl GS, Edwards KJ, Meredith CP (2004) A microsatellite marker based framework linkage map of Vitis vinifera L. Theor Appl Genet 108(5):864–872. https://doi.org/10.1007/s00122-003-1488-5

    Article  CAS  PubMed  Google Scholar 

  • Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122(6):1059–1073. https://doi.org/10.1007/s00122-010-1511-6

    Article  CAS  PubMed  Google Scholar 

  • Ru S, Main D, Evans K, Peace C (2015) Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding. Tree Genet Genomes 11(1). https://doi.org/10.1007/s11295-015-0834-5

  • SAS Institute (2015) JMP Pro 12.2. Cary, NC

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li WZ, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 7. https://doi.org/10.1038/msb.2011.75

  • Teh SL, Fresnedo-Ramirez J, Clark MD, Gadoury DM, Sun Q, Cadle-Davidson L, Luby JJ (2017) Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps. Mol Breeding 37(1). https://doi.org/10.1007/s11032-016-0586-4

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40(15). https://doi.org/10.1093/nar/gks596

  • van Heerden CJ, Burger P, Vermeulen A, Prins R (2014) Detection of downy and powdery mildew resistance QTL in a 'Regent' × 'RedGlobe' population. Euphytica 200(2):281–295. https://doi.org/10.1007/s10681-014-1167-4

    Article  Google Scholar 

  • Van Ooijen JW (2006) JoinMap(R) 4. Software for the calculation of genetic linkage maps in experimental populations. 4.1 edn., Wageningen, The Netherlands

  • Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 93(5):343–349. https://doi.org/10.1017/S0016672311000279

    Article  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematte L, Mraz A, Battilana J, Stormo K, Costa F, Tao QZ, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2 (12). doi:https://doi.org/10.1371/journal.pone.0001326

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38(6):1358–1370. https://doi.org/10.2307/2408641

    CAS  PubMed  Google Scholar 

  • Welter LJ, Gokturk-Baydar N, Akkurt M, Maul E, Eibach R, Topfer R, Zyprian EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Mol Breeding 20(4):359–374. https://doi.org/10.1007/s11032-007-9097-7

    Article  CAS  Google Scholar 

  • Xu C, Ranjbar MRN, Wu Z, DiCarlo J, Wang YX (2017) Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller BMC Genomics 18. doi:https://doi.org/10.1186/s12864-016-3425-4

  • Yang S, Fresnedo-Ramírez J, Sun Q, Manns DC, Sacks GL, Mansfield AK, Luby JJ, Londo JP, Reisch BI, Cadle-Davidson LE, Fennell AY (2016a) Next generation mapping of enological traits in an F2 interspecific grapevine hybrid family. PLoS One 11 (3). doi:https://doi.org/10.1371/journal.pone.0149560

  • Yang S, Fresnedo-Ramírez J, Wang MH, Cote L, Schweitzer P, Barba P, Takacs EM, Clark M, Luby J, Manns DC, Sacks G, Mansfield AK, Londo J, Fennell A, Gadoury D, Reisch B, Cadle-Davidson L, Sun Q (2016b) A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: a case study for marker-assisted selection in grapevine. Hortic res-England 3. doi:https://doi.org/10.1038/hortres.2016.2

  • Zarouri B, Vargas AM, Gaforio L, Aller M, de Andrés MT, Cabezas JA (2015) Whole-genome genotyping of grape using a panel of microsatellite multiplex PCRs. Tree Genet Genomes 11(2):17. https://doi.org/10.1007/s11295-015-0843-4

    Article  Google Scholar 

  • Zendler D, Schneider P, Töpfer R, Zyprian E (2017) Fine mapping of Ren3 reveals two loci mediating hypersensitive response against Erysiphe necator in grapevine. Euphytica 213(3):68. https://doi.org/10.1007/s10681-017-1857-9

    Article  Google Scholar 

  • Zhao F, McParland S, Kearney F, Du L, Berry DP (2015) Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genet Sel Evol 47(1):49. https://doi.org/10.1186/s12711-015-0127-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Zyprian E, Ochssner I, Schwander F, Simon S, Hausmann L, Bonow-Rex M, Moreno-Sanz P, Grando MS, Wiedemann-Merdinoglu S, Merdinoglu D, Eibach R, Topfer R (2016) Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Mol Gen Genomics 291(4):1573–1594. https://doi.org/10.1007/s00438-016-1200-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Michelle Schaub, Hema Kasinathan, Anna Nowogrodzki, Paige Appleton, Mary Jean Welser and Jackie Lillis for their technical support phenotyping powdery mildew resistance. We thank Steve Luce and Mike Colizzi; Norma Ambriz and Jacob Andresen; and Peter Hemstad from Cornell University, USDA-ARS Parlier, and the University of Minnesota, respectively, for help maintaining the mapping families used in this study. The authors gratefully acknowledge the USDA-NIFA Specialty Crop Research Initiative (award no. 2011-51181-30635) for funding the VitisGen project (http://www.vitisgen.org/) and support for JFR, as well as the National Grape and Wine Initiative for support for SY.

Author information

Authors and Affiliations

Authors

Contributions

JFR, SY, LCD and QS analyzed the data. LMC and PAS carried out sequencing. LCD, BIR, QS, CAL, DWR, JJL, MDC, JPL, PK and DMG developed germplasm and planned the study. JFR, SY and LCD wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lance Cadle-Davidson.

Ethics declarations

This research does not involve human participants or animals.

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Mention of trade names or commercial products is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture (USDA). USDA is an equal opportunity provider and employer.

Electronic supplementary material

ESM 1

(DOCX 22 kb)

ESM 2

(TXT 3 kb)

ESM 3

(XLSX 2770 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fresnedo-Ramírez, J., Yang, S., Sun, Q. et al. An integrative AmpSeq platform for highly multiplexed marker-assisted pyramiding of grapevine powdery mildew resistance loci. Mol Breeding 37, 145 (2017). https://doi.org/10.1007/s11032-017-0739-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0739-0

Keywords

Navigation