Skip to main content
Log in

Targeted sequencing of a complex locus within a polyploid genome using reduced representation libraries

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Apospory is a form of gametophytic apomixis in which embryos develop from unreduced embryo sacs derived from aposporous initials formed from nucellar cells of ovules to produce offspring genetically identical to the female plant. Apospory in Pennisetum squamulatum (8X) and Cenchrus ciliaris (4X) is a dominant trait controlled by a physically large, hemizygous, heterochromatic chromosomal block called the apospory-specific genomic region (ASGR). Both apomictic species are polyploid, with genome sizes estimated at 2600 to 3000 Mbp for C. ciliaris and 9400 to 10,300 Mbp for P. squamulatum. A study was conducted to determine whether duplex-specific nuclease (DSN) normalization of DNA from apomictic and sexual genotypes would reduce repetitive sequences and allow bioinformatic analysis to predict sequence contigs derived from the ASGR. DSN libraries from four genotypes were sequenced using Illumina® HiSeq 2000 technology. 39 out of 44 tested sequence characterized amplified region (SCAR) markers from in silico predicted ASGR-specific contigs were mapped to the ASGR in a Pennisetum F1 mapping population. Eighteen SCARs showed apomict-specific amplification in C. ciliaris. The successful mapping of ~90 % of the SCAR markers to the ASGR in the Pennisetum F1 mapping population shows that DSN normalization and Illumina sequencing can be used as an effective strategy for targeted mapping of a physically large locus rich in repetitive sequences, like that of the ASGR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akiyama Y, Conner JA, Goel S, Morishige DT, Mullet JE, Hanna WW, Ozias-Akins P (2004) High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis. Plant Physiol 134:1733–1741. doi:10.1104/pp.103.033969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama Y, Goel S, Conner JA, Hanna WW, Yamada-Akiyama H, Ozias-Akins P (2011) Evolution of the apomixis transmitting chromosome in Pennisetum. BMC Evol Biol 11:289–289. doi:10.1186/1471-2148-11-289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albertini E, Porceddu A, Ferranti F, Reale L, Barcaccia G, Romano B, Falcinelli M (2001) Apospory and parthenogenesis may be uncoupled in Poa pratensis: a cytological investigation. Sex Plant Reprod 14:213–217

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61:51–94. doi:10.1006/bijl.1996.0118

    Article  Google Scholar 

  • Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc Natl Acad Sci USA 103:18650–18655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conner JA, Goel S, Gunawan G, Cordonnier-Pratt MM, Johnson VE, Liang C, Wang H, Pratt LH, Mullet JE, DeBarry J, Yang L, Bennetzen JL, Klein PE, Ozias-Akins P (2008) Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus. Plant Physiol 147:1396–1411. doi:10.1104/pp.108.119081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conner JA, Gunawan G, Ozias-Akins P (2013) Recombination within the apospory specific genomic region leads to the uncoupling of apomixis components in Cenchrus ciliaris. Planta 238:51–63. doi:10.1007/s00425-013-1873-5

    Article  CAS  PubMed  Google Scholar 

  • Conner JA, Mookkan M, Huo H, Chae K, Ozias-Akins P (2015) A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. PNAS 2015. doi:10.1073/pnas.1505856112 (Published ahead of print, 24 Aug 2015)

  • Dujardin M, Hanna WW (1989) Developing apomictic pearl millet—characterization of a BC3 plant. J Genet Breed 43:145–150

    Google Scholar 

  • Emberton J, Ma J, Yuan Y, SanMiguel P, Bennetzen JL (2005) Gene enrichment in maize with hypomethylated partial restriction (HMPR) libraries. Genome Res 15:1441–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel S, Chen Z, Conner JA, Akiyama Y, Hanna WW, Ozias-Akins P (2003) Delineation by fluorescence in situ hybridization of a single hemizygous chromosomal region associated with aposporous embryo sac formation in Pennisetum squamulatum and Cenchrus ciliaris. Genetics 163:1069–1082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goel S, Chen Z, Akiyama Y, Conner JA, Basu M, Gualtieri G, Hanna WW, Ozias-Akins P (2006) Comparative physical mapping of the apospory-specific genomic region in two apomictic grasses: Pennisetum squamulatum and Cenchrus ciliaris. Genetics 173:389–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimanelli D, Leblanc O, Perotti E, Grossniklaus U (2001) Developmental genetics of gametophytic apomixis. Trends Genet 17:597–604

    Article  CAS  PubMed  Google Scholar 

  • Gualtieri G, Conner JA, Morishige DT, Moore LD, Mullet JE, Ozias-Akins P (2006) A segment of the apospory-specific genomic region is highly microsyntenic not only between the apomicts Pennisetum squamulatum and Buffelgrass, but also with a rice chromosome 11 centromeric-proximal genomic region. Plant Physiol 140:963–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hand ML, Koltunow AM (2014) The genetic control of apomixis: asexual seed formation. Genetics 197:441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huo H, Conner JA, Ozias-Akins P (2009) Genetic mapping of the apospory-specific genomic region in Pennisetum squamulatum using retrotransposon-based molecular markers. Theor Appl Genet 119:199–212. doi:10.1007/s00122-009-1029-y

    Article  CAS  PubMed  Google Scholar 

  • Koltunow AM, Bicknell RA, Chaudhury AM (1995) Apomixis: molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol 108(4):1345–1352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotani Y, Henderson ST, Suzuki G, Johnson SD, Okada T, Siddons H, Mukai Y, Koltunow AM (2014) The LOSS OF APOMEIOSIS (LOA) locus in Hieracium praealtum can function independently of the associated large-scale repetitive chromosomal structure. New Phytol 201:973–981. doi:10.1111/nph.12574

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. doi:10.1186/gb-2009-10-3-r25

    Article  PubMed  PubMed Central  Google Scholar 

  • Leblanc O, Grimanelli D, González-de-León D, Savidan Y (1995) Detection of the apomictic mode of reproduction in maize-Tripsacum hybrids using maize RFLP markers. Theor Appl Genet 90:1198–1203. doi:10.1007/BF00222943

    Article  CAS  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, 1000 Genome Project Data Processing Subgroup (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079. doi:10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  Google Scholar 

  • Matvienko M, Kozik A, Froenicke L, Lavelle D, Martineau B, Perroud B, Michelmore R (2013) Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride. PLoS ONE 8:1–17. doi:10.1371/journal.pone.0055913

    Article  Google Scholar 

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 475–518

    Chapter  Google Scholar 

  • Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155:379–390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozias-Akins P (2006) Apomixis: developmental characteristics and genetics. Crit Rev Plant Sci 25:199–214

    Article  Google Scholar 

  • Ozias-Akins P, van Dijk PJ (2007) Mendelian genetics of apomixis in plants. Ann Rev Genet 41:509–537

    Article  CAS  PubMed  Google Scholar 

  • Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci USA 95:5127–5132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer LE, Rabinowicz PD, O’Shaughnessy AL, Balija VS, Nascimento LU, Dike S, de la Bastide M, Martienssen RA, McCombie WR (2003) Maize genome sequencing by methylation filtration. Science 302:2115–2117

    Article  PubMed  Google Scholar 

  • Paterson A, Bowers JE, Bruggmann R, Dubchak I, Grimwood J et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Peterson DG, Schulze SR, Sciara EB, Lee SA, Bowers JE, Nagel A, Jiang N, Tibbitts DC, Wessler SR, Paterson AH (2002) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12:795–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishna W, Emberton J, Ogden M, SanMiguel P, Bennetzen JL (2002) Structural analysis of the maize Rp1 complex reveals numerous sites and unexpected mechanisms of local rearrangement. Plant Cell 14:3213–3223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roche D, Cong P, Chen Z, Hanna WW, Gustine DL, Sherwood RT, Ozias-Akins P (1999) An apospory-specific genomic region is conserved between Buffelgrass (Cenchrus ciliaris L.) and Pennisetum squamulatum Fresen. Plant J 19:203–208

    Article  CAS  PubMed  Google Scholar 

  • Roche D, Conner J, Budiman M, Frisch D, Wing R, Hanna W, Ozias-Akins P (2002) Construction of BAC libraries from two apomictic grasses to study the microcolinearity of their apospory-specific genomic regions. Theor Appl Genet 104:804–812

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Article  CAS  PubMed  Google Scholar 

  • Savidan Y (2000) Apomixis: genetics and breeding. In: Janick J, Savidan Y (eds) Plant breeding reviews, vol 18. Wiley, New York, pp 13–86

    Google Scholar 

  • Shagin DA, Rebrikov DV, Kozhemyako VB, Altshuler IM, Shcheglov AS, Zhulidov PA, Bogdanova EA, Staroverov DB, Rasskazov VA, Lukyanov S (2002) A novel method for SNP detection using a new duplex-specific nuclease from crab hepatopancreas. Genome Res 12(12):1935–1942

    Article  Google Scholar 

  • Shagina I, Bogdanova E, Mamedov IZ, Lebedev Y, Lukyanov S, Shagin D (2010) Normalization of genomic DNA using duplex-specific nuclease. Biotechniques 48:455–459. doi:10.2144/000113422

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Conner JA, Zeng YJ, Hanna WW, Johnson VE, Ozias-Akins P (2010) Characterization of apomictic BC7 and BC8 pearl millet: meiotic chromosome behavior and construction of an ASGR-carrier chromosome-specific library. Crop Sci 50:892–902

    Article  CAS  Google Scholar 

  • Smith DB, Flavell RB (1975) Characterisation of the wheat genome by renaturation kinetics. Chromosoma 50:223–242

    Article  CAS  Google Scholar 

  • Van Dijk PJ, Tas IC, Falque M, Bakx-Schotman T (1999) Crosses between sexual and apomictic dandelions (Taraxacum). II. The breakdown of apomixis. Heredity 83:715–721

    Article  PubMed  Google Scholar 

  • Voigt-Zielinski ML, Piwczyński M, Sharbel TF (2012) Differential effects of polyploidy and diploidy on fitness of apomictic Boechera. Sex Plant Reprod 25:97–109. doi:10.1007/s00497-012-0181-8

    Article  PubMed  Google Scholar 

  • Wimpee CF, Rawson JR (1979) Characterization of the nuclear genome of pearl millet. Biochim Biophys Acta 562:192–206

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, SanMiguel PJ, Bennetzen JL (2002) Methylation-spanning linker libraries link gene-rich regions and identify epigenetic boundaries in Zea mays. Genome Res 12:1345–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, SanMiguel PJ, Bennetzen JL (2003) High-Cot sequence analysis of the maize genome. Plant J 34:249–255

    Article  CAS  PubMed  Google Scholar 

  • Zerbino DR (2010) Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinform 11(11):5. doi:10.1002/0471250953.bi1105s31

    Google Scholar 

  • Zhang G, Liu X, Quan Z, Cheng S, Xu X et al (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotech 30:549–554. doi:10.1038/nbt.2195

    Article  CAS  Google Scholar 

  • Zhulidov PA, Bogdanova EA, Shcheglov AS, Vagner LL, Khaspekov GL, Kozhemyako VB, Matz MV, Meleshkevitch E, Moroz LL, Lukyanov SA, Shagin DA (2004) Simple cDNA normalization using kamchatka crab duplex-specific nuclease. Nucleic Acids Res 32:e37

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhulidov PA, Bogdanova EA, Shcheglov AS, Shagina IA, Vagner LL, Khazpekov GL, Kozhemiako VV, Luk’ianov SA, Shagin DA (2005) A method for the preparation of normalized cDNA libraries enriched with full-length sequences. Bioorg Khim 31:186–194

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Pioneer Hi-Bred. We thank Gunawati Gunawan for providing technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joann Conner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 Summary of mapping results. Supplementary material 1 (PDF 65 kb)

Supplementary Table 2 Primer sequence information. Supplementary material 2 (PDF 39 kb)

Supplementary Table 3 BlastN results. Supplementary material 3 (PDF 196 kb)

11032_2016_482_MOESM4_ESM.pdf

Supplementary Table 4 Comparison of read alignment data between Velvet and SPAdes generated contigs. Supplementary material 4 (PDF 202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conner, J., Sapkota, S., Deschamps, S. et al. Targeted sequencing of a complex locus within a polyploid genome using reduced representation libraries. Mol Breeding 36, 60 (2016). https://doi.org/10.1007/s11032-016-0482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0482-y

Keywords

Navigation