Skip to main content
Log in

Molecular basis of the high-palmitic acid trait in sunflower seed oil

  • Published:
Molecular Breeding Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Sunflower (Helianthus annuus L.) seed oil with high palmitic acid content has enhanced thermo-oxidative stability, which makes it well suited to high-temperature uses. CAS-5 is a sunflower mutant line that accumulates over 25 % palmitic acid in its seed oil, compared to 5–8 % in conventional cultivars. The objective of this study was to investigate the molecular basis of the high-palmitic acid trait in CAS-5 through both candidate gene and QTL mapping approaches. An F2 population derived from the cross between CAS-5 and the conventional line HA-89 was developed. A 3-ketoacyl-ACP synthase II (KASII) locus on a telomeric region of linkage group (LG) 9 of the sunflower genetic map was found to co-segregate with palmitic acid content in this population. The KASII locus explained the vast majority of the phenotypic variation (98 %) of the trait. Two minor QTL affecting palmitic acid content were also found on the lower half of LG 9 and on LG 17. Additionally, QTL associated with other major fatty acids (stearic, oleic, and linoleic acid) were identified on LG 1, 6, and 10. This result may reflect untapped genetic variation that could exist among sunflower cultivars for genes determining fatty acid composition. In addition to demonstrating the major role of a KASII locus in the accumulation of high levels of palmitic acid in CAS-5 seeds, this study stressed the importance of characterizing genes with minor effects on fatty acid profile in order to establish optimal breeding strategies for modifying fatty acid composition in sunflower seed oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aghoram K, Wilson RE, Burton JW, Dewey RE (2006) A mutation in a 3-keto-acyl-ACP synthase II gene is associated with elevated palmitic acid levels in soybean seeds. Crop Sci 46:2453–2459

    Article  CAS  Google Scholar 

  • Anai T, Hoshino T, Imai N, Takagi Y (2012) Molecular characterization of two high-palmitic-acid mutant loci induced by X-ray irradiation in soybean. Breed Sci 61:631–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry ST, Allen RJ, Barnes SR, Caligari PDS (1994) Molecular analysis of Helianthus annuus L. 1. Restriction length polymorphism between inbred lines of cultivated sunflower. Theor Appl Genet 89:435–441

    Article  CAS  PubMed  Google Scholar 

  • Berry ST, Leon AJ, Hanfrey CC, Challis P, Burkholz A, Barnes SR, Rufener GK, Lee M, Caligari PDS (1995) Molecular marker analysis of Helianthus annuus L. 2. Construction of an RFLP linkage map for cultivated sunflower. Theor Appl Genet 91:195–199

    Article  CAS  PubMed  Google Scholar 

  • Boersma JG, Ablett GR, Grainger C, Gillman JD, Bilyeu KD, Rajcan I (2012) New mutations in a delta-9-stearoyl-ACP desaturase gene associated with enhanced stearic acid levels in soybean seed. Crop Sci 52:1736–1742

    Article  CAS  Google Scholar 

  • Bohn M, Khairallah MM, González-de-León D, Hoisington DA, Utz HF, Deutsch JA, Jewell DC, Mihm JA, Melchinger AE (1996) QTL mapping in tropical maize: I. Genomic regions affecting leaf feeding resistance to sugarcane borer and other traits. Crop Sci 36:1352–1361

    Article  Google Scholar 

  • Bowers JE, Bachlava E, Brunick RL, Rieseberg LH, Knapp SJ, Burke JM (2012) Development of a 10,000 locus genetic map of the sunflower genome based on multiple crosses. G3 2:721–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke JM, Knapp SJ, Rieseberg LH (2005) Genetic consequences of selection during the evolution of cultivated sunflower. Genetics 171:1933–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahoon EB, Shanklin J (2000) Substrate-dependent mutant complementation to select fatty acid desaturase variants for metabolic engineering of plant seed oils. Proc Natl Acad Sci USA 97:12350–12355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinal AJ, Burton JW, Camacho-Roger AM, Yang JH, Wilson RF, Dewey RE (2007) Molecular analysis of soybean lines with low palmitic acid content in the seed oil. Crop Sci 47:304–310

    Article  CAS  Google Scholar 

  • Cardinal AJ, Whetten R, Wang S, Auclair J, Hyten D, Cregan P, Bachlava E, Gillman J, Dewey R, Upchurch G, Miranda L, Burton JW (2014) Mapping the low palmitate fap1 mutation and validation of its effects in soybean oil and agronomic traits in three soybean populations. Theor Appl Genet 127:97–111

    Article  CAS  PubMed  Google Scholar 

  • Carlsson AS, LaBrie ST, Kinney AJ, von Wettstein-Knowles P, Browse J (2002) A KAS2 cDNA complements the phenotypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket. Plant J 29:761–770

    Article  CAS  PubMed  Google Scholar 

  • De Vries BD, Fehr WR, Welke GA, Dewey RE (2011a) Molecular analysis of mutant alleles for elevated palmitate concentration in soybean. Crop Sci 51:2554–2560

    Article  Google Scholar 

  • De Vries BD, Fehr WR, Welke GA, Dewey RE (2011b) Molecular characterization of the mutant (A22) allele for reduced palmitate concentration in soybean. Crop Sci 51:1611–1616

    Article  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dorrell DG, Vick BA (1997) Properties and processing of oilseed sunflower. In: Schneiter AA (ed) Sunflower production and technology. Agronomy monograph 35. ASA, CSSA and SSSA, Madison WI EE.UU, pp 709–746

  • Fernández-Martínez JM, Osorio J, Mancha M, Garcés R (1997) Isolation of high palmitic mutants on high oleic background. Euphytica 97:113–116

    Article  Google Scholar 

  • Fernández-Martínez JM, Velasco L, Pérez-Vich B (2004) Progress in the genetic modification of sunflower oil quality. In: Seiler GJ (ed) Proceedings of 16th international sunflower conference, Fargo, ND, USA. Int Sunflower Assoc, Paris, France, pp 1–14

    Google Scholar 

  • Fernández-Martínez JM, Pérez-Vich B, Velasco L (2009) Mutation breeding for oil quality improvement in sunflower. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 177–181

    Google Scholar 

  • Garcés R, Mancha M (1993) One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal Biochem 211:139–143

    Article  PubMed  Google Scholar 

  • Gillman JD, Tetlow A, Hagely K, Boersma JG, Cardinal A, Rajcan I, Bilyeu K (2014) Identification of the molecular genetic basis of the low palmitic acid seed oil trait in soybean mutant line RG3 and association analysis of molecular markers with elevated seed stearic acid and reduced seed palmitic acid. Mol Breed 34:447–455

    Article  CAS  Google Scholar 

  • Guinda Á, Dobarganes MC, Ruiz-Mendez MV, Mancha M (2003) Chemical and physical properties of a sunflower oil with high levels of oleic and palmitic acids. Eur J Lipid Sci Technol 105:130–137

    Article  CAS  Google Scholar 

  • Hawkins DJ, Kridl JC (1998) Characterization of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola. Plant J 13:743–752

    Article  CAS  PubMed  Google Scholar 

  • Head K, Galos T, Fang Y, Hudson K (2012) Mutations in the soybean 3-ketoacyl-ACP synthase gene are correlated with high levels of seed palmitic acid. Mol Breed 30:1519–1523

    Article  Google Scholar 

  • Hongtrakul V, Slabaugh MB, Knapp SJ (1998) RFLP, SSCP, and SSR markers for delta 9-stearoyl-acyl carrier protein desaturases strongly expressed in developing seeds of sunflower: intron lengths are polymorphic among elite inbred lines. Mol Breed 4:195–203

    Article  CAS  Google Scholar 

  • Ivanov P, Petakov D, Nikolova V, Pentchev E (1988). Sunflower breeding for high palmitic acid content in the oil. In: Proceedings of 12th international sunflower conference Novi Sad, Yugoslavia, Int Sunflower Assoc, Paris, France, pp 463–465

  • Jones P, Davies HM, Voelker TA (1995) Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7:359–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HU, Huang AHC (2004) Plastid lysophosphatidyl acyltransferase is essential for embryo development in arabidopsis. Plant Physiol 134:1206–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai Z, Livingstone K, Zou Y, Church SA, Knapp JS, Andrews J, Rieseberg LH (2005) Identification and mapping of SNPs from ESTs in sunflower. Theor Appl Genet 111:1532–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Marchive C, Nikovics K, To A, Lepiniec L, Baud S (2014) Transcriptional regulation of fatty acid production in higher plants: molecular bases and biotechnological outcomes. Eur J Lipid Sci Technol 116:1332–1343

    Article  CAS  Google Scholar 

  • Marmesat S, Mancha M, Ruiz-Méndez MV, Dobarganes MC (2005) Performance of sunflower oil with high levels of oleic and palmitic acids during industrial frying of almonds, peanuts, and sunflower seeds. J Am Oil Chem Soc 82:505–510

    Article  CAS  Google Scholar 

  • Marmesat S, Velasco L, Ruiz-Méndez MV, Fernández-Martínez JM, Dobarganes C (2008) Thermostability of genetically modified sunflower oils differing in fatty acid and tocopherol compositions. Eur J Lipid Sci Technol 110:776–782

    Article  CAS  Google Scholar 

  • Marmesat S, Morales A, Velasco J, Dobarganes MC (2012) Influence of fatty acid composition on chemical changes in blends of sunflower oils during thermoxidation and frying. Food Chem 135:2333–2339

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Force E, Álvarez-Ortega R, Garcés R (1999) Enzymatic characterisation of high-palmitic acid sunflower (Helianthus annuus L.) mutants. Planta 207:533–538

    Article  Google Scholar 

  • Moreno-Pérez AJ, Venegas-Calerón M, Vaistij FE, Salas JJ, Larson TR, Garcés R, Graham IA, Martínez-Force E (2012) Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds. Planta 235:629–639

    Article  PubMed  Google Scholar 

  • Moreno-Pérez AJ, Venegas-Calerón M, Vaistij FE, Salas JJ, Larson TR, Garcés R, Graham IA, Martínez-Force E (2014) Effect of a mutagenized acyl-ACP thioesterase FATA allele from sunflower with improved activity in tobacco leaves and Arabidopsis seeds. Planta 239:667–677

    Article  PubMed  Google Scholar 

  • O’Hara P, Slabas AR, Fawcett T (2000) Modulation of fatty acid biosynthesis by β-keto reductase expression. Biochem Soc Trans 28:613–615

    Article  PubMed  Google Scholar 

  • O’Hara P, Slabas AR, Fawcett T (2001) Fatty acid synthesis in developing leaves of Brassica napus in relation to leaf growth and changes in activity of 3-oxoacyl-ACP reductase. FEBS Lett 488:18–22

    Article  PubMed  Google Scholar 

  • O’Hara P, Slabas AR, Fawcett T (2007) Antisense expression of 3-oxoacyl-ACP reductase affects whole plant productivity and causes collateral changes in activity of fatty acid synthase components. Plant Cell Physiol 48:736–744

    Article  PubMed  Google Scholar 

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136

    Article  CAS  PubMed  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osorio J, Fernández-Martínez JM, Mancha M, Garcés R (1995) Mutant sunflower with high concentration in saturated fatty acid in the oil. Crop Sci 35:739–742

    Article  CAS  Google Scholar 

  • Pérez-Vich B, Fernández J, Garcés R, Fernández-Martínez JM (1999) Inheritance of high palmitic acid content in the seed oil of sunflower mutant CAS-5. Theor Appl Genet 98:496–501

    Article  Google Scholar 

  • Pérez-Vich B, Fernández-Martinez JM, Grondona M, Knapp SJ, Berry ST (2002) Stearoyl-ACP and oleoyl-PC desaturase genes cosegregate with quantitative trait loci underlying stearic and oleic acid mutant phenotypes in sunflower. Theor Appl Genet 104:338–349

    Article  PubMed  Google Scholar 

  • Pérez-Vich B, Fernández-Martinez JM, Leon A, Knapp SJ, Berry ST (2004a) Mapping minor QTL for increased stearic acid content in sunflower seed oil. Mol Breed 13:313–322

    Article  Google Scholar 

  • Pérez-Vich B, Akhtouch B, Knapp SJ, Leon AJ, Velasco L, Fernández-Martínez JM, Berry ST (2004b) Quantitative trait loci for broomrape (Orobanche cumana Wallr.) resistance in sunflower. Theor Appl Genet 109:92–102

    Article  PubMed  Google Scholar 

  • Pidkowich MS, Nguyen HT, Heilmann I, Ischebeck T, Shanklin J (2007) Modulating seed beta-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil. Proc Natl Acad Sci USA 104:4742–4747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salas JJ, Martínez-Force E, Harwood JL, Venegas-Calerón M, Aznar-Moreno JA, Moreno-Pérez AJ, Ruíz-López N, Serrano-Vega MJ, Graham IA, Mullen RT, Garcés R (2014) Biochemistry of high stearic sunflower, a new source of saturated fats. Prog Lipid Res 55:30–42

    Article  CAS  PubMed  Google Scholar 

  • Schuppert GF, Tang S, Slabaugh MB, Knapp SJ (2006) The sunflower high-oleic mutant Ol carries variable tandem repeats of FAD2-1, a seed-specific oleoyl-phosphatidyl choline desaturase. Mol Breed 17:241–256

    Article  CAS  Google Scholar 

  • Shimakata T, Stumpf PK (1982) Isolation and function of spinach leaf beta-ketoacyl- acyl-carrier-protein synthases. Proc Natl Acad Sci USA 79:5808–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soldatov KI (1976) Chemical mutagenesis in sunflower breeding. Proceeding of 7th international sunflower conference. USSR, Krasnodar, pp 352–357

    Google Scholar 

  • Somerville C, Browse J, Jaworski JG, Ohlrogge JB (2000) Lipids. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. Amer Soc Plant Physiol, Rockville, MD, pp 456–527

    Google Scholar 

  • Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105:1124–1136

    Article  CAS  PubMed  Google Scholar 

  • Troncoso-Ponce MA, Nikovics K, Marchive C, Lepiniec L, Baud S (2015) New insights on the organization and regulation of the fatty acid biosynthetic network in the model higher plant Arabidopsis thaliana. Biochimie. doi:10.1016/j.biochi.2015.05.013

    PubMed  Google Scholar 

  • Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. J Quant Trait Loci 2:1–5

    Google Scholar 

  • Velasco L, Pérez-Vich B, Fernández-Martínez JM (2008) A new sunflower mutant with increased levels of palmitic acid in seed oil. Helia 48:55–60

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Yu JK, Tang S, Slabaugh MB, Heesacker A, Cole G, Herring M, Soper J, Han F, Chu W-C, Webb DM, Thompson L, Edwards KJ, Berry S, Leon AJ, Grondona M, Olungu C, Maes N, Knapp SJ (2003) Towards a saturated molecular genetic linkage map for cultivated sunflower. Crop Sci 43:367–387

    Article  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research was partially funded by Junta de Andalucía support program to research group AGR-118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Pérez-Vich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11032_2016_462_MOESM1_ESM.docx

Supplementary material 1 Correlation coefficients between palmitic acid, stearic acid, oleic acid, and linoleic acid levels in the F2 generation (195 individuals) from crosses between HA-89, with standard low palmitic acid content, and CAS-5, with high palmitic acid content (DOCX 42 kb)

11032_2016_462_MOESM2_ESM.docx

Supplementary material 2 Scatter plot of palmitic acid (% of the total fatty acids) versus oleic acid (% of the total fatty acids) in the HA-89 x CAS-5 F2 mapping population, labeled according to the alleles at the KASII marker locus on LG 9. A= homozygous with respect to the allele derived from CAS-5; B= homozygous with respect to the allele derived from HA-89; H= heterozygous (DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Vich, B., del Moral, L., Velasco, L. et al. Molecular basis of the high-palmitic acid trait in sunflower seed oil. Mol Breeding 36, 43 (2016). https://doi.org/10.1007/s11032-016-0462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0462-2

Keywords

Navigation