Skip to main content
Log in

Effect of a mutagenized acyl-ACP thioesterase FATA allele from sunflower with improved activity in tobacco leaves and Arabidopsis seeds

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The substrate specificity of the acyl–acyl carrier protein (ACP) thioesterases significantly determines the type of fatty acids that are exported from plastids. Thus, designing acyl-ACP thioesterases with different substrate specificities or kinetic properties would be of interest for plant lipid biotechnology to produce oils enriched in specialty fatty acids. In the present work, the FatA thioesterase from Helianthus annuus was used to test the impact of changes in the amino acids present in the binding pocket on substrate specificity and catalytic efficiency. Amongst all the mutated enzymes studied, Q215W was especially interesting as it had higher specificity towards saturated acyl-ACP substrates and higher catalytic efficiency compared to wild-type H. annuus FatA. Null, wild type and high-efficiency alleles were transiently expressed in tobacco leaves to check their effect on lipid biosynthesis. Expression of active FatA thioesterases altered the composition of leaf triacylglycerols but did not alter total lipid content. However, the expression of the wild type and the high-efficiency alleles in Arabidopsis thaliana transgenic seeds resulted in a strong reduction in oil content and an increase in total saturated fatty acid content. The role and influence of acyl-ACP thioesterases in plant metabolism and their possible applications in lipid biotechnology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACP:

Acyl carrier protein

CoA:

Coenzyme A

DAG:

Diacylglycerol

IMAC:

Immobilized metal affinity chromatography

TAG:

Triacylglycerides

References

  • Bates PA, Kelley LA, MacCallum RM, Sternberg MJE (2001) Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins 45:39–46

    Article  Google Scholar 

  • Blatti JL, Beld J, Behnke CA, Mendez M, Mayfield SP, Burkart MD (2012) Manipulating fatty acid biosynthesis in microalgae for biofuel through protein–protein interactions. PLoS One 7:e42949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15:1020–1033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bonaventure G, Bao X, Ohlrogge J, Pollard M (2004) Metabolic responses to the reduction in palmitate caused by disruption of the FATB gene in Arabidopsis. Plant Physiol 135:1269–1279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bouvier-Navé P, Benveniste P, Oelkers P, Sturley SL, Schaller H (2000) Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. Eur J Biochem 267:85–96

    Article  PubMed  Google Scholar 

  • Burgal J, Shockey J, Lu C, Dyer J, Larson T, Graham I, Browse J (2008) Metabolic engineering of hydroxy fatty acid production in plants: rcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol J 6:819–831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cahoon EB, Shanklin J (2000) Substrate-dependent mutant complementation to select fatty acid desaturase variants for metabolic engineering of plant seed oils. Proc Natl Acad Sci USA 97:12350–12355

    Article  CAS  PubMed  Google Scholar 

  • Cahoon EB, Salehuzzaman S, Shanklin J, Browse J (1998) A determinant of substrate specificity predicted from the acyl–acyl carrier protein desaturase of developing cat’s claw seed. Plant Physiol 117:593–598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cuff JA, Barton GJ (2000) Application of enhanced multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins Struct Funct Genet 40:502–511

    Article  CAS  PubMed  Google Scholar 

  • Dehesh K, Jones A, Knutzon DS, Voelker TA (1996) Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of ChFatB2, a thioesterase cDNA from Cuphea hookeriana. Plant J 9:167–172

    Article  CAS  PubMed  Google Scholar 

  • Dörmann P, Kridl JC, Ohlrogge JB (1994) Cloning and expression in Escherichia coli of a cDNA coding for the oleoyl-acyl carrier protein thioesterase from coriander (Coriandrum sativum L.). Biochim Biophys Acta 1212:134–136

    Article  PubMed  Google Scholar 

  • Facciotti MT, Yuan L (1998) Molecular dissection of the plant acyl–acyl carrier protein thioesterases. Fett Lipid 100:167–172

    Article  CAS  Google Scholar 

  • Facciotti MT, Bertain PB, Yuan L (1999) Improved stearate phenotype in transgenic canola expressing a modified acyl–acyl carrier protein thioesterase. Nat Biotechnol 17:593–597

    Article  CAS  PubMed  Google Scholar 

  • Filichkin SA, Slabaugh MB, Knapp SJ (2006) New FATB thioesterases from a high-laurate Cuphea species: functional and complementation analyses. Eur J Lipid Sci Technol 108:979–990

    Article  CAS  Google Scholar 

  • Johnson PE, Fox SR, Hills MJ, Rawsthorne S (2000) Inhibition by long-chain acyl-CoAs of glucose 6-phosphate metabolism in plastids isolated from developing embryos of oilseed rape (Brassica napus L.). Biochem J 348:145–150

    Article  CAS  PubMed  Google Scholar 

  • Jones A, Davies HM, Voelker TA (1995) Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7:359–371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kapila J, DeRycke R, VanMontagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  • Larson TR, Graham IA (2001) A novel technique for the sensitive quantification of acyl CoA esters from plant tissues. Plant J 25:115–125

    Article  CAS  PubMed  Google Scholar 

  • Larson TR, Edgell T, Byrne J, Dehesh K, Graham IA (2002) Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds. Plant J 32:519–527

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li H, Li Q, Yang X, Zheng D, Warburton M, Chai Y, Zhang P, Guo Y, Yan J, Li J (2011) 11-bp insertion in Zea mays fatb reduces the palmitic acid content of fatty acids in maize grain. PLoS One 6:e24699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindqvist Y, Huang W, Schneider G, Shanklin J (1996) Crystal structure of Δ9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins. EMBO J 15:4081–4092

    CAS  PubMed  Google Scholar 

  • Mayer KM, Shanklin J (2005) A structural model of the plant acyl–acyl carrier protein thioesterase FatB comprises two helix/4-stranded sheet domains, the N-terminal domain containing residues that affect specificity and the C-terminal domain containing catalytic residues. J Biol Chem 280:3621–3627

    Article  CAS  PubMed  Google Scholar 

  • Mayer KM, Shanklin J (2007) Identification of amino acid residues involved in substrate specificity of plant acyl-ACP thioesterases using a bioinformatics-guided approach. BMC Plant Biol 7:1

    Article  PubMed Central  PubMed  Google Scholar 

  • McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Pérez AJ, Sánchez-García A, Salas JJ, Garcés R, Martínez-Force E (2011) Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: cloning, characterization and their impact on oil composition. Plant Physiol Biochem 49:82–87

    Article  PubMed  Google Scholar 

  • Nikolau BJ, Perera MADN, Brachova L, Shanks B (2008) Platform biochemicals for a biorenewable chemical industry. Plant J 54:536–545

    Article  CAS  PubMed  Google Scholar 

  • Ohlrogge JB (1994) Design of new plant products: engineering of fatty acid metabolism. Plant Physiol 104:821–826

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohlrogge JB, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136

    Article  CAS  PubMed  Google Scholar 

  • Ouali M, King RD (2000) Cascaded multiple classifiers for secondary structure prediction. Prot Sci 9:1162–1176

    Article  CAS  Google Scholar 

  • Pollastri G, Przybylski D, Rost B, Baldi P (2002) Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47:228–235

    Article  CAS  PubMed  Google Scholar 

  • Rawsthorne S (2002) Carbon flux and fatty acid synthesis in plants. Prog Lipid Res 41:182–196

    Article  CAS  PubMed  Google Scholar 

  • Rock CO, Garwin JL (1979) Preparative enzymatic synthesis and hydrophobic chromatography of acyl–acyl carrier protein. J Biol Chem 254:7123–7128

    CAS  PubMed  Google Scholar 

  • Rost B (1996) PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol 266:525–539

    Article  CAS  PubMed  Google Scholar 

  • Salas JJ, Ohlrogge JB (2002) Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 403:25–34

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-García A, Moreno-Pérez AJ, Muro-Pastor AM, Salas JJ, Garcés R, Martínez-Force E (2010) Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation. Phytochemistry 71:860–869

    Article  PubMed  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serrano-Vega MJ, Garcés R, Martínez-Force E (2005) Cloning, characterization and structural model of a FatA-type thioesterase from sunflower seeds (Helianthus annuus L.). Planta 221:868–880

    Article  CAS  PubMed  Google Scholar 

  • Shockey JM, Fulda MS, Browse JA (2002) Arabidopsis contains nine long-chain acyl-coenzyme A synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol 129:1710–1722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voelker TA, Worrell AC, Anderson L, Bleibaum J, Fan C, Hawkins DJ, Radke SE, Davies HM (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257:72–74

    Article  CAS  PubMed  Google Scholar 

  • Voelker TA, Jones A, Cranmer AM, Davies HM, Knutzon DS (1997) Broad-range and binary-range acyl–acyl-carrier-protein thioesterases suggest an alternative mechanism for medium-chain production in seeds. Plant Physiol 114:669–677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  CAS  PubMed  Google Scholar 

  • Wu PZ, Li J, Wei Q, Zeng L, Chen YP, Li MR, Jiang HW, Wu GJ (2009) Cloning and functional characterization of an acyl–acyl carrier protein thioesterase (JcFATB1) from Jatropha curcas. Tree Physiol 29:1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Voelker TA, Hawkins DJ (1995) Modification of the substrate specificity of an acyl–acyl carrier protein thioesterase by protein engineering. Proc Natl Acad Sci USA 92:10639–10643

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Nelson BA, Caryl G (1996) The catalytic cysteine and histidine in the plant acyl–acyl carrier protein thioesterases. J Biol Chem 271:3417–3419

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Rosario Sánchez and Valeria Gazda for their technical assistance. This work was supported by the MINECO and FEDER (Project AGL2011-23187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Martínez-Force.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Pérez, A.J., Venegas-Calerón, M., Vaistij, F.E. et al. Effect of a mutagenized acyl-ACP thioesterase FATA allele from sunflower with improved activity in tobacco leaves and Arabidopsis seeds. Planta 239, 667–677 (2014). https://doi.org/10.1007/s00425-013-2003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-2003-0

Keywords

Navigation