Skip to main content
Log in

Genetic mapping of day-neutrality in cultivated strawberry

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Day-neutrality is a highly desirable trait in strawberry (Fragaria L.)-breeding programs worldwide due to its importance in extending the harvest season in commercial production. Day-neutral genotypes are photoperiod insensitive and will initiate flowers under any photoperiod conditions as long as temperatures are moderate (below 30/26 °C day/night). In the current study, the inheritance of day-neutrality was investigated using an F1 population derived from the cross ‘Tribute’ × ‘Honeoye’. The day-neutral trait was scored qualitatively [day-neutral (DN) or short-day (SD)], and quantitatively (number of weeks of flowering). When qualitatively scored in five locations, the DN trait fit a 1:1 segregation ratio in the hot summers of Maryland (MD), Minnesota (MN) and Michigan (MI). Segregation was skewed toward additional DN progeny in the cooler summers of California (CA) and Oregon (OR). Regardless of evaluation location, the trait was mapped on linkage group IV-T-1 of the ‘Tribute’ map near the markers ChFaM148-184T and ChFaM011-163T. Quantitative-trait loci (QTL) for number of weeks of flowering in MD and CA and for stolon or ‘runner’ production in MN, MI and OR also were identified on linkage group IV-T-1 of the ‘Tribute’ map. These QTL were significantly associated with the qualitatively scored trait and its closely linked molecular markers. The marker ChFaM148-184T explained 63.8 % of the total phenotypic variation for the number of weeks of flowering for MD and 32.4 % of the total phenotypic variation for runner production in MN. Consequently, it was hypothesized that a single major gene or tightly linked cluster of genes in coupling control day-neutrality in this population. The results found in the current study suggest that day-neutrality can be qualitatively scored at least in the locations where the temperatures do not allow SD plants to behave as DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmadi H, Bringhurst RS, Voth V (1990) Modes of inheritance of photoperiodism in Fragaria. J Am Soc Hortic Sci 115:146–152

    Google Scholar 

  • Albani MC, Battey NH, Wilkinson MJ (2004) The development of ISSR-derived scar markers around the SEASONAL FLOWERING LOCUS (SFL) in Fragaria vesca. Theor Appl Genet 109:571–579

    Article  CAS  PubMed  Google Scholar 

  • Ashley MV, Styan SMN, Craft KJ, Jones KL, Feldheim KA, Fessler JL, Lewers KS, Ashman TL (2003) High variability and disomic segregation of microsatellites in the octoploid Fragaria virginiana Mill. (Rosaceae). Theor Appl Genet 107:1201–1207

    Article  CAS  PubMed  Google Scholar 

  • Brown T, Wareing PF (1965) The genetical control of the everbearing habit and three other characters in varieties of Fragaria vesca. Euphytica 14:97–112

    Google Scholar 

  • Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by tag DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20(6):1004

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dale A, Hancock JF, Luby JL (2002) Breeding dayneutral strawberries for North America. Acta Hortic 567:133–136

    Google Scholar 

  • Darrow GM (1936) Interrelation of temperature and photoperiodism in the production of fruit-buds and runners in the strawberry. Proc Am Soc Hortic Sci 34:360–363

    Google Scholar 

  • Darrow G (1966) The strawberry: history breeding and physiology. Holt, Rinehart and Winston, NewYork

    Google Scholar 

  • Davis TM, Yu H (1997) A linkage map of the diploid strawberry, Fragaria vesca. J Hered 88:215–221

    Article  CAS  Google Scholar 

  • Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou Merdinoglu VD, Meredith CP, Riaz S, Roux C, This P (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382

    Article  CAS  PubMed  Google Scholar 

  • Durner EF, Barden JA, Himelrick DG, Poling EB (1984) Photoperiod and temperature effects on flower and runner development in day-neutral, Junebearing, and everbearing strawberries. J Am Soc Hortic Sci 109:396–400

    Google Scholar 

  • Folta KM, Davis TM (2006) Strawberry genes and genomics. Crit Rev Plant Sci 25:399–415

    Article  CAS  Google Scholar 

  • Galletta GJ, Bringhurst RS (1990) Strawberry management. In: Galletta GJ, Himelrick D (eds) Small fruit crop management. Prentice Hall, Englewood Cliffs, pp 83–156

    Google Scholar 

  • Galletta GJ, Draper AD, Swartz HJ (1981) New everbearing strawberries. Hortic Sci 16:726

    Google Scholar 

  • Gaston A, Perrotte J, Lerceteau-Köhler E et al (2013) PFRU, a single dominant locus regulates the balance between sexual and asexual plant reproduction in cultivated strawberry. J Exp Bot 64:1837–1848

    Article  CAS  PubMed  Google Scholar 

  • Govindarajulu R, Liston A, Ashman TL (2013) Sex-determining chromosomes and sexual dimorphism: insights from genetic mapping of sex expression in a natural hybrid Fragaria × ananassa subsp. cuneifolia. Heredity 110:430–438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hancock JF (1999) Strawberries. CABI Publishing, New York

    Google Scholar 

  • Hancock JF, Maas JL, Shanks CH, Breen PJ, Luby JJ (1990) Strawberries. In: Moore JN, Ballington JR (eds) Genetic resources in temperature fruit and nut crop. International Society for Horticultural Science, Wageningen

    Google Scholar 

  • Hancock JF, Callow PW, Dale A, Luby JJ, Finn CE, Hokanson SC, Hummer KE (2001) From the Andes to the Rockies: native strawberry collection and utilization. Hortic Sci 36:221–225

    Google Scholar 

  • Hancock JF, Luby JJ, Dale A, Callow PW, Serçe S, El-Shiek A (2002) Utilizing wild Fragaria virginiana in strawberry cultivar development: Inheritance of photoperiod sensitivity, fruit size, gender, female fertility and disease resistance. Euphytica 126:177–184

    Article  CAS  Google Scholar 

  • Hirakawa H, Shirasawa K, Kosugi S, Tashiro K, Nakayama S, Yamada M et al (2014) Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species. DNA Res 21(2):169–181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, Kawamura K et al (2012) The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J 69:116–125

    Article  CAS  PubMed  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koskela EA, Mouhu K, Albani MC, Kurokura T, Rantanen M, Sargent DJ et al (2012) Mutation in TERMINAL FLOWER1 reverses the photoperiodic requirement for flowering in the wild strawberry Fragaria vesca. Plant Physiol 159:1043–1054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed Central  CAS  PubMed  Google Scholar 

  • Larson KD (1994) Strawberry. In: Schaffer B, Anderson PC (eds) Handbook of environmental physiology of fruit crops, Vol. 1, Temperate crops. CRC Press, Boca Raton, Fla

    Google Scholar 

  • Lerceteau-Köhler E, Guérin G, Laigret F, Denoyes-Rothan B (2003) Characterization of mixed disomic and polysomic inheritance in the octoploid strawberry (Fragaria × ananassa) using AFLP mapping. Theor Appl Genet 107:619–628

    Article  PubMed  Google Scholar 

  • Powers L (1954) Inheritance of period of blooming in progenies of strawberries. Proc Am Soc Hortic Sci 64:293–298

    Google Scholar 

  • Rousseau-Gueutin M, Lerceteau-Köhler E, Barrot L, Sargent DJ, Monfort A, Simpson D, Arús P, Guérin G, Denoyes-Rothan B (2008) Comparative genetic mapping between octoploid and diploid Fragaria species reveals a high level of colinearity between their genomes and the essentially disomic behavior of the cultivated octoploid strawberry. Genetics 179:2045–2060

    Article  PubMed Central  PubMed  Google Scholar 

  • Sargent DJ, Davis TM, Tobutt KR, Wilkinson MJ, Battey NH, Simpson DW (2004) A genetic linkage map of microsatellite, gene-specific and morphological markers in diploid Fragaria. Theor Appl Genet 109:1385–1391

    Article  CAS  PubMed  Google Scholar 

  • Sargent DJ, Clarke J, Simpson DW, Tobutt KR, Arus P, Monfort A, Vilanova S, Denoyes-Rothan B, Rousseau M, Folta KM, Bassil NV, Battey NH (2006) An enhanced microsatellite map of diploid Fragaria. Theor Appl Genet 112:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Sargent DJ, Rys A, Nier S, Simpson DW, Tobutt KR (2007) The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theor Appl Genet 114:373–384

    Article  CAS  PubMed  Google Scholar 

  • Sargent DJ, Cipriani G, Vilanova S, Gil-Ariza D, Arus P, Simpson DW, Tobutt KR, Monfort A (2008) The development of a bin mapping population and the selective mapping of 103 markers in the diploid Fragaria reference map. Genome 51:120–127

    Article  CAS  PubMed  Google Scholar 

  • Sargent D, Fernandéz-Fernandéz F, Ruiz-Rojas JJ, Sutherland BG, Passey A, Whitehouse AB, Simpson DW (2009) A genetic linkage map of the cultivated strawberry (Fragaria × ananassa) and its comparison to the diploid Fragaria reference map. Mol Breed 24:293–303

    Article  CAS  Google Scholar 

  • Sargent DJ, Passey T, Surbanovski N et al (2012) A microsatellite linkage map for the cultivated strawberry (Fragaria × ananassa) suggests extensive regions of homozygosity in the genome that may have resulted from breeding and selection. Theor Appl Genet 124:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments: a poor man’s approach to genotyping for research and high-throughput diagnostics. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Scott DH (1936) Size, firmness, and time of ripening of fruit of seedlings of Fragaria virginiana Duch. crossed with cultivated strawberry varieties. Proc Am Soc Hortic Sci 74:388–393

    Google Scholar 

  • Serçe S, Hancock JF (2005) Inheritance of day-neutrality in octoploid species of Fragaria. J Am Soc Hortic Sci 130:580–584

    Google Scholar 

  • Shaw DV (2003) Heterogeneity of segregation ratios from selfed progenies demonstrate polygenic inheritance for day neutrality in strawberry (Fragaria × ananassa Duch.). J Am Sci 128:504–507

    Google Scholar 

  • Shaw DV, Famula TR (2005) Complex segregation analysis of dayneutrality in domestic strawberry (Fragaria x ananassa Duch.). Euphytica 145:331–338

    Article  Google Scholar 

  • Shen CH, Krishnamurthy R, Yeh KW (2009) Decreased l-ascorbate content mediating bolting is mainly regulated by the galacturonate pathway in Oncidium. Plant Cell Physiol 50:935–946

    Article  CAS  PubMed  Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    Article  CAS  PubMed  Google Scholar 

  • Sønsteby A, Heide OM (2007) Long-day control of flowering in everbearing strawberries. J Hortic Sci Biotechnol 82:875–884

    Google Scholar 

  • Sønsteby A, Heide OM (2008) Long-day rather than autonomous control of flowering in the diploid everbearing strawberry Fragaria vesca ssp. semperflorens. J Hortic Sci Biotechnol 83:360–366

    Google Scholar 

  • Spigler RB, Lewers KS, Main DS, Ashman TL (2008) Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome. Heredity 101:507–517

    Article  CAS  PubMed  Google Scholar 

  • Spigler RB, Lewers KS, Johnson AL, Ashman T-L (2010) Comparative mapping reveals autosomal origin of sex chromosome in octoploid Fragaria virginiana. J Hered 101:S107–S117

    Article  CAS  PubMed  Google Scholar 

  • Stam P (1993) Construction of integrated linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Sugimoto T, Tamaki K, Matsumoto J, Yamamoto Y, Shiwaku K, Watanabe K (2005) Detection of RAPD markers linked to the everbearing gene in Japanese cultivated strawberry. Plant Breed 124:498–501

    Article  CAS  Google Scholar 

  • USDA-Economic Research Service (2010) Fruit and Tree Nuts Outlook. FTS-341, March 26, 2010

  • USDA-National Agricultural Statistics Service (2013) Noncitrus Fruits and Nuts 2012 Preliminary Summary, January 2013

  • van Ooijen JW (2004) MapQTL 5, software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTL. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Weebadde CK, Wang D, Finn CE, Lewers KS, Luby JJ, Bushakra J, Sjulin TM, Hancock JF (2008) Using a linkage mapping approach to identify QTL for day-neutrality in the octoploid strawberry. Plant Breed 127:94–101

    Google Scholar 

  • Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanks-ley SD (1992) The detection and estimation of linkage in poly-ploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Article  CAS  PubMed  Google Scholar 

  • Zorrilla-Fontanesi Y, Cabeza A, Dominguez P et al (2011a) Quantitative trait loci and underlying candidate genes controlling agronomical and fruit quality traits in octoploid strawberry (Fragaria × ananassa). Theor App Genet 123:755–778

    Article  Google Scholar 

  • Zorrilla-Fontanesi Y, Cabeza A, Torres AM, Botella MA, Valpuesta V, Monfort A, Sanchez-Sevilla JF, Amaya I (2011b) Development and bin mapping of strawberry genic-SSRs in diploid Fragaria and their transferability across the Rosoideae subfamily. Mol Breed 27:137–156

Download references

Acknowledgments

This project was partially funded by the USDA Cooperative State Research, Education and Extension Service—National Research Initiative—Plant Genome Program (Award # 2005-35300-15468), USDA-ARS Projects 1245-21220-254-00 and 5358-21220-002-00, Driscoll Strawberry Associates, Inc., Michigan State University and the University of Minnesota. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture or any of the other agencies involved in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Lewers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, P., Bushakra, J.M., Stewart, P. et al. Genetic mapping of day-neutrality in cultivated strawberry. Mol Breeding 35, 79 (2015). https://doi.org/10.1007/s11032-015-0250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0250-4

Keywords

Navigation