Skip to main content
Log in

Hydroxytriazenes incorporating sulphonamide derivatives: evaluation of antidiabetic, antioxidant, anti-inflammatory activities, and computational study

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The existent investigation deals with synthesis, characterization, computational analysis, and biological activities of some hydroxytriazene derivatives containing sulphonamide moiety. The compounds were screened for antidiabetic, antioxidant, and anti-inflammatory activities. The antidiabetic activity was assessed using α-glucosidase and α-amylase inhibition assays with IC50 values ranging from 32.0 to 759.13 μg/mL and 157.77 to 340.47 μg/mL while standard drug acarbose showed IC50 values 12.21 and 69.74 μg/mL, respectively. The antioxidant activity was evaluated using DPPH and ABTS radical scavenging assays with IC50 value ranging from 54.01 to 912.66 μg/mL and 33.22 to 128.11 μg/mL, and standard drug ascorbic acid showed IC50 values 29.12 μg/mL and 69.13 μg/mL, respectively. Anti-inflammatory activity was investigated using the carrageenan-induced paw edema method, where percentage inhibition was up to 93.0 and 98.57 for 2 h and 4 h, respectively, and all the compounds were found to exhibit excellent anti-inflammatory activity. Moreover, prediction of activity spectra for substance and molecular docking were also performed. The PASS prediction hypothesized the potential of the compounds for anti-inflammatory activity, and docking results suggested the best binding pose for compounds 1b and 2b with the least energy value from which compounds can be considered as potent COX-2 inhibitors. Furthermore, possible interactions between hydroxytriazene analogues and the targets of antioxidant NADPH oxidase and antidiabetic human maltase-glucoamylase enzyme have been identified. The HOMO and LUMO analysis revealed charge transfer within the compounds. These findings suggested that the synthesized compounds can be potential agents for the treatment of diabetes and inflammation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Materials and methods and all the instrumentation spectra like IR, 1H NMR, 13C NMR, and mass spectra are provided in the SI.

References

  1. Mukherjee N, Lin L, Contreras CJ, Templin AT (2021) Β-cell death in diabetes: past discoveries, present understanding, and potential future advances. Metabolites 11:796

    Article  CAS  Google Scholar 

  2. Esser N, Utzschneider KM, Kahn SE (2020) Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia 63:2007–2021

    Article  Google Scholar 

  3. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, Song X, Ren Y, Shan PF (2020) Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep 8:1–1

    Google Scholar 

  4. Min SH, Yoon JH, Hahn S, Cho YM (2018) Efficacy and safety of combination therapy with an α-glucosidase inhibitor and a dipeptidyl peptidase-4 inhibitor in patients with type 2 diabetes mellitus: a systematic review with meta-analysis. J Diabetes Investig 9:893–902

    Article  CAS  Google Scholar 

  5. Zhang L, Chen Q, Li L, Kwong JS, Jia P, Zhao P, Wang W, Zhou X, Zhang M, Sun X (2016) Alpha-glucosidase inhibitors and hepatotoxicity in type 2 diabetes: a systematic review and meta-analysis. Sci Rep 6:1–8

    Google Scholar 

  6. Dahlen A, Dashi G, Maslov I, Attwood MM, Jonsson J, Trukhan V, Schiöth HB (2022) Trends in antidiabetic drug discovery: FDA approved drugs, new drugs in clinical trials and global sales. Front Pharmacol 19:807548

    Article  Google Scholar 

  7. Zhang L, Wang X, Cueto R, Effi C, Zhang Y, Tan H, Qin X, Ji Y, Yang X, Wang H (2019) Biochemical basis and metabolic interplay of redox regulation. Redox Biol 26:101284. https://doi.org/10.1016/j.redox.2019.101284

    Article  CAS  Google Scholar 

  8. Sharma GN, Gupta G, Sharma P (2018) A comprehensive review of free radicals, antioxidants, and their relationship with human ailments. Crit Rev Eukaryot Gene Expr 28:139–154

    Article  Google Scholar 

  9. Karam HM, Radwan RR (2019) Metformin modulates cardiac endothelial dysfunction, oxidative stress and inflammation in irradiated rats: A new perspective of an antidiabetic drug. Clin Exp Pharmacol Physiol 46:1124–1132. https://doi.org/10.1111/1440-1681.13148

    Article  CAS  Google Scholar 

  10. Greten FR, Grivennikov SI (2019) Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 16:27–41

    Article  Google Scholar 

  11. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737. https://doi.org/10.1038/nri3073

    Article  CAS  Google Scholar 

  12. Li D, Wu M (2021) Pattern recognition receptors in health and diseases. Sig Transduct Target Ther 6:291

    Article  CAS  Google Scholar 

  13. Tourki B, Halade GV (2021) Heart failure syndrome with preserved ejection fraction is a metabolic cluster of non-resolving inflammation in obesity. Front Cardiovasc Med 8:695952

    Article  CAS  Google Scholar 

  14. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435. https://doi.org/10.1038/nature07201

    Article  CAS  Google Scholar 

  15. Geronikaki AA, Lagunin AA, Hadjipavlou-Litina DI, Eleftheriou PT, Filimonov DA, Poroikov VV, Alam I, Saxena AK (2008) Computer-aided discovery of anti-inflammatory thiazolidinones with dual cyclooxygenase/lipoxygenase inhibition. J Med Chem 51:1601–1609. https://doi.org/10.1021/jm701496h

    Article  CAS  Google Scholar 

  16. Amatruda JG, Katz R, Peralta CA, Estrella MM, Sarathy H, Fried LF, Newman AB, Parikh CR, Ix JH, Sarnak MJ, Shlipak MG (2021) Association of non-steroidal anti-inflammatory drugs with kidney health in ambulatory older adults. J Am Geriatrics Soc 69:726–34

    Article  Google Scholar 

  17. Akgul O, Mannelli CDL, Vullo D, Angeli A, Ghelardini C, Bartolucci G, Altamimi ASA, Scozzafava A, Supuran TC, Carta F (2018) Discovery of novel nonsteroidal anti-inflammatory drugs and carbonic anhydrase inhibitors hybrids (NSAIDs–CAIs) for the management of rheumatoid. J Med Chem 61:4961–4977. https://doi.org/10.1021/acs.jmedchem.8b00420

    Article  CAS  Google Scholar 

  18. Apaydın S, Torok M (2019) Sulfonamide derivatives as multi-target agents for complex diseases. Bioorg Med Chem Lett 15:2042–2050

    Article  Google Scholar 

  19. Zhang J, Tan Y, Li G, Chen L, Nie M, Wang Z, Ji H (2021) Coumarin sulfonamides and amides derivatives: design, synthesis, and antitumor activity in vitro. Molecules 26:786

    Article  CAS  Google Scholar 

  20. Badgujar JR, More DH, Meshram JS (2018) Synthesis, antimicrobial and antioxidant activity of pyrazole based sulfonamide derivatives. Indian J Microbiol 58:93–99. https://doi.org/10.1007/s12088-017-0689-6

    Article  CAS  Google Scholar 

  21. Shafique M, Hameed S, Naseer MM, Al-Masoudi NA (2018) Synthesis of new chiral 1,3,4-thiadiazole-based di- and tri-arylsulfonamide residues and evaluation of in vitro anti-HIV activity and cytotoxicity. Mol Divers 22:957–968. https://doi.org/10.1007/s11030-018-9851-2

    Article  CAS  Google Scholar 

  22. Berredjem M, Bouzina A, Bahadi R, Bouacida S, Rastija V, Djouad SE, Sothea TO, Almalki FA, Hadda TB, Aissaoui M (2022) Antitumor activity, X-Ray crystallography, in silico study of some-sulfamido-phosphonates. Identification of pharmacophore sites. J Mol Struc 1250:131886

    Article  CAS  Google Scholar 

  23. Demir Y, Koksal Z (2020) Some sulfonamides as aldose reductase inhibitors: therapeutic approach in diabetes. Arch Physiol Biochem 23:1–6. https://doi.org/10.1080/13813455.2020.1742166

    Article  CAS  Google Scholar 

  24. Poudapally S, Battu S, Velatooru LR, Bethu MS, Rao JV, Sharma S, Sen S, Pottabathini N, Iska VBR, Katangoor V (2017) Synthesis and biological evaluation of novel quinazoline-sulfonamides as anti-cancer agents. Bioorg Med Chem Lett 27:1923–1928. https://doi.org/10.1016/j.bmcl.2017.03.042

    Article  CAS  Google Scholar 

  25. Pervaiz M, Riaz A, Munir A, Saeed Z, Hussain S, Rashid A, Younas U, Adnan A (2020) Synthesis and characterization of sulfonamide metal complexes as antimicrobial agents. J Mol Struct 1202:127284. https://doi.org/10.1016/j.molstruc.2019.127284

    Article  CAS  Google Scholar 

  26. Irfan A, Ahmad S, Hussain S, Batool F, Riaz H, Zafar R, Kotwica-Mojzych K, Mojzych M (2021) Recent updates on the synthesis of bioactive quinoxaline-containing sulfonamides. Appl Sci 11:5702. https://doi.org/10.3390/app11125702

    Article  CAS  Google Scholar 

  27. Ovung A, Bhattacharyya J (2021) Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions. Biophys Rev 13:259–272. https://doi.org/10.1007/s12551-021-00795-9

    Article  CAS  Google Scholar 

  28. Taha M, Imran S, Salahuddin M, Iqbal N, Rahim F, Uddin N, Shehzad A, Farooq RK, Alomari M, Khan KM (2021) Evaluation and docking of indole sulfonamide as a potent inhibitor of α-glucosidase enzyme in streptozotocin induced diabetic albino wistar rats. Bioorg Chem 110:104808. https://doi.org/10.1016/j.bioorg.2021.104808

    Article  CAS  Google Scholar 

  29. Alyar S, Şen T, Ozdemir UO, Alyar H, Adem S, Şen C (2019) Synthesis, spectroscopic characterizations, enzyme inhibition, molecular docking study and DFT calculations of new Schiff bases of sulfa drugs. J Mol Struc 1185:416–424. https://doi.org/10.1016/j.molstruc.2019.03.002

    Article  CAS  Google Scholar 

  30. Mendes CP, Postal BG, Oliveira GT, Castro AJ, Frederico MJ, Moraes AL, Neuenfeldt PD, Nunes RJ, Menegaz D, Silva FR (2019) Insulin stimulus-secretion coupling is triggered by a novel thiazolidinedione/sulfonylurea hybrid in rat pancreatic islets. J Cell Physiol 234:509–520

    Article  CAS  Google Scholar 

  31. Purohit DN (1967) Hydroxytriazenes-a review of a new class of chelating agents. Talanta 14:353–359. https://doi.org/10.1016/0039-9140(67)80009-2

    Article  CAS  Google Scholar 

  32. Purohit DN, Tyagi MP, Bhatnagar R, Bishnoi IR (1992) Hydroxytriazenes as chelating agents: a review. Revs Anal Chem 11:269–303. https://doi.org/10.1515/REVAC.1992.11.3-4.269

    Article  CAS  Google Scholar 

  33. Kumar S, Garg M, Jodha JS, Singh RP, Pareek N, Chauhan RS, Goswami AK (2009) Studies on insecticidal activity of some hydroxytriazenes derivatives. E-J Chem 6:466–468. https://doi.org/10.1155/2009/943576

    Article  CAS  Google Scholar 

  34. Ombaka AO, Muguna AT, Gichumbi JM (2012) Antibacterial and antifungal activities of novel hydroxytriazenes. J Environ Chem Ecotoxicol 4:133–136. https://doi.org/10.5897/JECE12.006

    Article  CAS  Google Scholar 

  35. Jain S, Dayma V, Sharma P, Bhargava A, Baroliya PK, Goswami AK (2019) Synthesis of some new hydroxytriazenes and their antimicrobial and anti-inflammatory activities. Anti-Inflamm Anti-Allergy Agents Med Chem 19:50–60. https://doi.org/10.2174/1871523018666190301151826

    Article  CAS  Google Scholar 

  36. Regar M, Baroliya PK, Patidar A, Dashora R, Mehta A, Chauhan RS, Goswami AK (2016) Antidyslipidemic and antioxidant effects of novel hydroxytriazenes. Pharm Chem J 50:310–314. https://doi.org/10.1007/s11094-016-1442-x

    Article  CAS  Google Scholar 

  37. Goswami AK, Ameta KL, Khan S (2020) Hydroxytriazenes and triazenes: the versatile framework and medicinal applications, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  38. Singh K, Patel P, Goswami AK (2008) Anti-inflammatory activity of hydroxytriazenes and their Vanadium complexes. E-J Chem 5:1144–1148. https://doi.org/10.1155/2008/830737

    Article  CAS  Google Scholar 

  39. Agarwal S, Baroliya PK, Bhargava A, Tripathi IP, Goswami AK (2016) Synthesis, characterization, theoretical prediction of activities and evaluation of biological activities of some sulfacetamide based hydroxytriazenes. Bioorg Med Chem Lett 26:2870–2873. https://doi.org/10.1016/j.bmcl.2016.04.051

    Article  CAS  Google Scholar 

  40. Sharma P, Dayma V, Dwivedi A, Baroliya PK, Tripathi IP, Vanangamudi M, Chauhan RS, Goswami AK (2020) Synthesis of sulpha drug-based hydroxytriazene derivatives: anti-diabetic, antioxidant, anti-inflammatory activity and their molecular docking studies. Biorg Chem 96:103642. https://doi.org/10.1016/j.bioorg.2020.103642

    Article  CAS  Google Scholar 

  41. Dayma V, Chopra J, Sharma P, Dwivedi A, Tripathi IP, Bhargava A, Murugesan V, Goswami AK, Baroliya PK (2020) Synthesis, antidiabetic, antioxidant and anti-inflammatory activities of novel hydroxytriazenes based on sulphadrugs. Heliyon 6:e04787. https://doi.org/10.1016/j.heliyon.2020.e04787

    Article  Google Scholar 

  42. Hasaninezhad F, Tavaf Z, Panahi F, Nourisefat M, Khalafi-Nezhad A, Yousefi R (2020) The assessment of antidiabetic properties of novel synthetic curcumin analogues: α-amylase and α-glucosidase as the target enzymes. J Diabetes Metab Disord 19:1505–1515. https://doi.org/10.1007/s40200-020-00685-z

    Article  CAS  Google Scholar 

  43. Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y (2020) Oxidative stress and diabetes: antioxidative strategies. Front Med 14:583–600. https://doi.org/10.1007/s11684-019-0729-1

    Article  Google Scholar 

  44. Ceriello A, Testa R, Genovese S (2016) Clinical implications of oxidative stress and potential role of natural antioxidants in diabetic vascular complications. Nutr Metab Cardiovasc Dis 26:285–292. https://doi.org/10.1016/j.numecd.2016.01.006

    Article  CAS  Google Scholar 

  45. Balbi ME, Tonin FS, Mendes AM, Borba HH, Wiens A, Llimos FF, Pontarolo R (2018) Antioxidant effects of vitamins in type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetol Metab Syndr 10:1–12. https://doi.org/10.1186/s13098-018-0318-5

    Article  CAS  Google Scholar 

  46. Oguntibeju OO (2019) Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol 11:45–63

    CAS  Google Scholar 

  47. Ng CY, Kamisah Y, Faizah O, Jaarin K (2012) The role of repeatedly heated soybean oil in the development of hypertension in rats: association with vascular inflammation. Int J Exp Pathol 93:377–387. https://doi.org/10.1111/j.1365-2613.2012.00839.x

    Article  CAS  Google Scholar 

  48. Pacurari M, Kafoury R, Tchounwou BP, Ndebele K (2014) The Renin-angiotensin-aldosterone system in vascular inflammation and remodeling. Int J Inflamm 2014:1–13. https://doi.org/10.1155/2014/689360

    Article  CAS  Google Scholar 

  49. Horio E, Kadomatsu T, Miyata K, Arai Y, Hosokawa K, Doi Y, Ninomiya T, Horiguchi H, Endo M, Tabata M, Tazume H, Tian Z, Takahashi O, Terada K, Takeya M, Hao H, Hirose N, Minami T, Suda T, KiyoharaY OH, Kaikita K, Oike Y (2014) Role of endothelial cell-derived Angptl2 in vascular inflammation leading to endothelial dysfunction and atherosclerosis progression. Arterioscler Thromb Vasc Biol 34:790–800. https://doi.org/10.1161/ATVBAHA.113.303116

    Article  CAS  Google Scholar 

  50. Ito F, Sono Y, Ito T (2019) Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants 8:72

    Article  CAS  Google Scholar 

  51. De Lavor EM, Fernandes AW, de Andrade Teles RB, Leal AE, de Oliveira Júnior RG, Gama e Silva M, De Oliveira AP, Silva JC, de Moura Fontes Araujo MT, Coutinho HD, De Menezes IR (2018) Essential oils and their major compounds in the treatment of chronic inflammation: a review of antioxidant potential in preclinical studies and molecular mechanisms. Oxid Med Cell Longev 23:6468593

    Google Scholar 

  52. Geronikaki A, Lagunin A, Poroikov V, Filimonov D, Hadjipavlou-litina D, Vicini P (2002) Computer aided prediction of biological activity spectra: Evaluating versus known and predicting of new activities for thiazole derivatives. SAR QSAR Environ Res 13:457–471. https://doi.org/10.1080/10629360290014322

    Article  CAS  Google Scholar 

  53. Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, Poroikov VV (2014) Prediction of the biological activity spectra of organic compounds using the PASS online web resources. Chem Heterocycl Compd 50:444–457. https://doi.org/10.1007/s10593-014-1496-1

    Article  CAS  Google Scholar 

  54. Wang JL, Limburg D, Granato MJ, Springer J, Joseph HRB, Liao S, Pawlitz JL, Kurumbail RG, Maziasz T, Talley JJ, Kiefer JR, Carter J (2010) The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: The second clinical candidate having a shorter and favorable human half-life. Bioorg Med Chem Lett 20:7159–7163. https://doi.org/10.1016/j.bmcl.2010.07.054

    Article  CAS  Google Scholar 

  55. Molecular Operating Environment (MOE) (2016) 2015.10; Chemical Computing Group Inc., 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, https://www.chemcomp.com/index.htm

  56. Galli CL, Sensi C, Fumagalli A, Parravicini C, Marinovich M, Eberini I (2014) A computational approach to evaluate the androgenic affinity of iprodione, procymidone, Vinclozolin and their metabolites. PLoS one 9:e104822. https://doi.org/10.1371/journal.pone.0104822

    Article  CAS  Google Scholar 

  57. Tripathi IP, Dwivedi A (2016) Synthesis, characterization and α-glucosidase inhibition of some copper, cobalt, nickel and zinc complexes with N-Methylethylenediamine. Br J Med Med Res 16:1–11. https://doi.org/10.9734/BJMMR/2016/26100

    Article  Google Scholar 

  58. Ilyasov IR, Beloborodov VL, Selivanova IA, Terekhov RP (2020) ABTS/PP decolorization assay of antioxidant capacity reaction pathways. Int J Mol Sci 21:1131. https://doi.org/10.3390/ijms21031131

    Article  CAS  Google Scholar 

  59. Re R, Pellegrini N, Proteggente A, Pannala A, Yan M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  60. Winter CA, Risley EA, Nuss GW (1962) Carrageenan-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Exp Biol Med 111:544–547

    Article  CAS  Google Scholar 

  61. Blobaum AL, Marnett LJ (2007) Structural and functional basis of Cyclooxygenase inhibition. J Med Chem 50:1425–1441. https://doi.org/10.1021/jm0613166

    Article  CAS  Google Scholar 

  62. Li X, Mazaleuskaya LL, Ballantyne LL, Meng H, FitzGerald GA, Funk CD (2018) Genomic and lipidomic analyses differentiate the compensatory roles of two COX isoforms during systemic inflammation in mice1,2[S]. J Lipid Res 59:102–112. https://doi.org/10.1194/jlr.M080028

    Article  CAS  Google Scholar 

  63. Simone RD, Chini MG, Bruno I, Riccio R, Mueller D, Werz O, Bifulco G (2011) Structure-based discovery of inhibitors of microsomal prostaglandin E2 Synthase-1,5-lipoxygenase and 5-lipoxygenase-activating protein: promising hits for the development of new anti-inflammatory agents. J Med Chem 54:1565–1575. https://doi.org/10.1021/jm101238d

    Article  CAS  Google Scholar 

  64. Khalil NA, Ahmed EM, Mohamed KO, Nissan YM, Zaitone Abo-Bakr S (2014) Synthesis and biological evaluation of new pyrazolone–pyridazine conjugates as anti-inflammatory and analgesic agents. Bioorg Med Chem 22:2080–2089. https://doi.org/10.1016/j.bmc.2014.02.042

    Article  CAS  Google Scholar 

  65. Cash JM, Klippel JH (1994) Second-line drug therapy for rheumatoid arthritis. New Eng J Med 330:1368–1375. https://doi.org/10.1056/NEJM199405123301908

    Article  CAS  Google Scholar 

  66. Lanas A, Baron JA, Sandler RS, Horgan K, Bolognese J, Oxenius B, Quan H, Watson D, Cook TJ, Schoen R, Burke C, Loftus S, Niv Y, Ridell R, Morton D, Bresalier R (2007) Peptic ulcer and bleeding events associated with rofecoxib in a 3-year colorectal adenoma chemoprevention trial. Gastroenterology 132:490–497. https://doi.org/10.1053/j.gastro.2006.11.012

    Article  CAS  Google Scholar 

  67. Harirforoosh S, Asghar W, Jamali F (2013) Trial Adverse effects of nonsteroidal anti-inflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharmaceut Sci 16:821–847

    Google Scholar 

  68. Wu KKW, Sung JJY, Lee CW, Yu J, Cho CH (2010) Cyclooxygenase-2 in tumorigenesis of gastrointestinal cancers: an update on the molecular mechanisms. Cancer Lett 295:7–16. https://doi.org/10.1016/j.canlet.2010.03.015

    Article  CAS  Google Scholar 

  69. Noureddine O, Issaoui N, Al-Dossary O (2021) DFT and molecular docking study of chloroquine derivatives as antiviral to coronavirus COVID-19. J King Saud Univ Sci 33:101248

    Article  Google Scholar 

  70. Dehkordi MM, Asgarshamsi MH, Fassihi A, Zborowski KK (2022) A comparative DFT study on the antioxidant activity of some novel 3-hydroxypyridine-4-one derivatives. Chem Biodivers. 8:e202100703

    Google Scholar 

  71. Thompson M A (2004) Arguslab computational chemistry software: a molecular modeling, graphics and drug design program. http://www.arguslab.com

Download references

Acknowledgements

Authors are thankful to SAIF, Chandigarh, India and MNIT, Jaipur, India for providing spectral analysis.

Funding

P.K. Baroliya acknowledges the financial support from the Science and Engineering Research Board, Government of India, for the award of the TARE grant (TAR/2018/000282).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved to the final version of the manuscript.

Corresponding author

Correspondence to Prabhat K. Baroliya.

Ethics declarations

Conflict of interests

The authors declare that there are no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1926 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, L.K., Chopra, J., Vanangamudi, M. et al. Hydroxytriazenes incorporating sulphonamide derivatives: evaluation of antidiabetic, antioxidant, anti-inflammatory activities, and computational study. Mol Divers 27, 223–237 (2023). https://doi.org/10.1007/s11030-022-10420-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10420-w

Keywords

Navigation