Skip to main content
Log in

Synthesis, Antimicrobial and Antioxidant Activity of Pyrazole Based Sulfonamide Derivatives

  • Original Research Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

A series of new sulfonamides have been synthesized from Ampyrone with different benzene sulfonyl chlorides to yield the N-1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) benzenesulfonamides (4ae). All synthesized compounds were characterized on the basis of FTIR, 1H NMR, and 13C NMR, and also by the aid of mass spectral data. Further, all synthesized compounds have studied for their in vitro antimicrobial activities against selected bacterial as well as fungal strains by the agar well diffusion method. Free radical scavenging activity has been investigated by using DPPH method. Among all the synthesized compounds, 4b, 4d, and 4e exhibited significant antimicrobial and antioxidant activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sonia G, Thachil KK, Parameswaran MK, Kochupappy RT (2014) Synthesis of some benzoxazinyl pyrazolone arylidenes as potent antimicrobials and antioxidants. Med Chem Res 23:1320–1326. https://doi.org/10.1007/s00044-013-0719-9

    Article  CAS  Google Scholar 

  2. García-Valverde M, Torroba T (2005) Sulfur–nitrogen heterocycles. Molecules 10:318–320. https://doi.org/10.3390/10020318

    Article  Google Scholar 

  3. Kvasnica M, Urban M, Dickinson NJ, Sarek J (2015) Pentacyclic triterpenoids with nitrogen-and sulfur-containing heterocycles: synthesis and medicinal significance. Nat Prod Rep 32:1303–1330. https://doi.org/10.1039/c5np00015g

    Article  CAS  PubMed  Google Scholar 

  4. Naim MJ, Alam O, Farah Nawaz M, Alam J, Alam P (2016) Current status of pyrazole and its biological activities. J Pharm Bioallied Sci 8:2–17. https://doi.org/10.4103/0975-7406.171694

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gaba M, Mohan C (2016) Development of drugs based on imidazole and benzimidazole bioactive heterocycles: recent advances and future directions. Med Chem Res 25:173–210. https://doi.org/10.1007/s00044-015-1495-5

    Article  CAS  Google Scholar 

  6. Feng M, Tang B, Liang SH, Jiang X (2016) Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr Top Med Chem 16:1200–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahn M, Gunasekaran P, Rajasekaran G, Kim EY, Lee SJ, Bang G, Cho K, Hyun JK, Lee HJ, Jeon YH, Kim NH (2017) Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity. Eur J Med Chem 125:551–564. https://doi.org/10.1016/j.ejmech.2016.09.071

    Article  CAS  PubMed  Google Scholar 

  8. Nitulescu GM, Draghici C, Olaru OT, Matei L, Ioana A, Dragu LD, Bleotu C (2015) Synthesis and apoptotic activity of new pyrazole derivatives in cancer cell lines. Bioorg Med Chem 23:5799–5808. https://doi.org/10.1016/j.bmc.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  9. El-Moghazy SM, Barsoum FF, Abdel-Rahman HM, Marzouk AA (2012) Synthesis and anti-inflammatory activity of some pyrazole derivatives. Med Chem Res 21:1722–1733. https://doi.org/10.1007/s00044-011-9691-4

    Article  CAS  Google Scholar 

  10. Datar PA, Jadhav SR (2015) Design and synthesis of Pyrazole-3-one derivatives as hypoglycaemic agents. Int J Med Chem. https://doi.org/10.1155/2015/670181

    PubMed  PubMed Central  Google Scholar 

  11. Ghorab MM, El-Gazzar MG, Alsaid MS (2014) Synthesis, characterization and anti-breast cancer activity of new 4-aminoantipyrine-based heterocycles. Int J Mol Sci 15:7539–7553. https://doi.org/10.3390/ijms15057539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sigroha S, Narasimhan B, Kumar P, Khatkar A, Ramasamy K, Mani V, Mishra RK, Majeed AB (2012) Design, synthesis, antimicrobial, anticancer evaluation, and QSAR studies of 4-(substituted benzylidene-amino)-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-ones. Med Chem Res 21:3863–3875. https://doi.org/10.1007/s00044-011-9906-8

    Article  CAS  Google Scholar 

  13. Mohanram I, Meshram J (2014) Synthesis and biological activities of 4-aminoantipyrine derivatives derived from betti-type reaction. ISRN Org Chem. https://doi.org/10.1155/2014/639392

    PubMed  PubMed Central  Google Scholar 

  14. dos Santos GG, Dias EV, Teixeira JM, Athie MC, Bonet IJ, Tambeli CH, Parada CA (2014) The analgesic effect of dipyrone in peripheral tissue involves two different mechanisms: neuronal K ATP channel opening and CB 1 receptor activation. Eur J Pharmacol 741:124–131. https://doi.org/10.1016/j.ejphar.2014.07.019

    Article  PubMed  Google Scholar 

  15. Rubtsov AE, Makhmudov RR, Kovylyaeva NV, Prosyanik NI, Bobrov AV, Zalesov VV (2002) Synthesis, antiinflammatory and analgesic activity of 4-antipyrine derivatives. Pharm Chem J 36:608–612. https://doi.org/10.1023/A:1022669432631

    Article  CAS  Google Scholar 

  16. Santos PM, Antunes AM, Noronha J, Fernandes E, Vieira AJ (2010) Scavenging activity of aminoantipyrines against hydroxyl radical. Eur J Med Chem 45:2258–2264. https://doi.org/10.1016/j.ejmech.2010.01.071

    Article  CAS  PubMed  Google Scholar 

  17. Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, Elton TS, Simmons DL (2002) COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci 99:13926–13931. https://doi.org/10.1073/pnas.162468699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malvar DD, Soares DM, Fabrício AS, Kanashiro A, Machado RR, Figueiredo MJ, Rae GA, de Souza GE (2011) The antipyretic effect of dipyrone is unrelated to inhibition of PGE2 synthesis in the hypothalamus. Br J Pharmacol 162:1401–1409. https://doi.org/10.1111/j.1476-5381.2010.01150.x

    Article  CAS  Google Scholar 

  19. Thiede JM, Kordus SL, Turman BJ, Buonomo JA, Aldrich CC, Minato Y, Baughn AD (2016) Targeting intracellular p-aminobenzoic acid production potentiates the anti-tubercular action of antifolates. Sci Rep 6:38083. https://doi.org/10.1038/srep38083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghorab MM, Ragab FA, Hamed MM (2009) Design, synthesis and anticancer evaluation of novel tetrahydroquinoline derivatives containing sulfonamide moiety. Eur J Med Chem 44:4211–4217. https://doi.org/10.1016/j.ejmech.2009.05.017

    Article  CAS  PubMed  Google Scholar 

  21. Genç Y, Özkanca R, Bekdemir Y (2008) Antimicrobial activity of some sulfonamide derivatives on clinical isolates of Staphylococus aureus. Ann Clin Microbiol Antimicrob 7:17. https://doi.org/10.1186/1476-0711-7-17

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang ZJ, Tian J, Wang LT, Wang MJ, Nan X, Yang L, Liu YQ, Morris-Natschke SL, Lee KH (2014) Design, synthesis and cytotoxic activity of novel sulfonylurea derivatives of podophyllotoxin. Bioorg Med Chem 22:204–210. https://doi.org/10.1016/j.bmc.2013.11.035

    Article  CAS  PubMed  Google Scholar 

  23. Badgujar J, More D, Meshram J (2017) Synthesis, characterization, in vitro antimicrobial, and anthelmintic evaluations of N-(4,6-dimethylpyrimidin-2-yl)-4-((2-hydroxynaphthalen-1-yl) diazenyl) benzene sulfonamide and its metal (II) complexes. Mod Org Chem Res 2:33–40. https://doi.org/10.22606/mocr.2017.22001

    Article  Google Scholar 

  24. Kumar V, Kaur K, Gupta GK, Gupta AK, Kumar S (2013) Developments in synthesis of the anti-inflammatory drug, celecoxib: a review. Recent Pat Inflamm Allergy Drug Discov 7:124–134

    Article  CAS  PubMed  Google Scholar 

  25. Leibovitch L, Matok I, Paret G (2007) Therapeutic applications of sildenafil citrate in the management of paediatric pulmonary hypertension. Drugs 67:57–74. https://doi.org/10.2165/00003495-200767010-00005

    Article  CAS  PubMed  Google Scholar 

  26. Srivastava S, Bhargava A (2016) Biofilms and human health. Biotechnol Lett 38:1–22. https://doi.org/10.1007/s10529-015-1960-8

    Article  CAS  PubMed  Google Scholar 

  27. Wu H, Moser C, Wang HZ, Høiby N, Song ZJ (2015) Strategies for combating bacterial biofilm infections. Int J Oral Sci 7:1–7. https://doi.org/10.1038/ijos.2014.65

    Article  PubMed  Google Scholar 

  28. Kalia VC, Prakash J, Koul S, Ray S (2017) Simple and rapid method for detecting biofilm forming bacteria. Indian J Microbiol 57:109–111. https://doi.org/10.1007/s12088-016-0616-2

    Article  CAS  PubMed  Google Scholar 

  29. Bordi C, de Bentzmann S (2011) Hacking into bacterial biofilms: a new therapeutic challenge. Ann Intensive Care 1:19. https://doi.org/10.1186/2110-5820-1-19

    Article  PubMed  PubMed Central  Google Scholar 

  30. Furniss BS (1989) Vogel’s textbook of practical organic chemistry. Pearson Education India, London

    Google Scholar 

  31. Tan S, Yang Y, Luo Z, Zhao S, Huang D, Zhang J, Dong L, Wang G (2011) An alternative synthetic process of p-acetaminobenzenesulfonyl chloride through combined chlorosulfonation by HClSO3 and PCl5. Chem Pap 65:510–518. https://doi.org/10.2478/s11696-011-0026-1

    Article  CAS  Google Scholar 

  32. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  Google Scholar 

  33. Bagul SD, Rajput JD, Tadavi SK, Bendre RS (2017) Design, synthesis and biological activities of novel 5-isopropyl-2-methylphenolhydrazide-based sulfonamide derivatives. Res Chem Intermed 43:2241–2252. https://doi.org/10.1007/s11164-016-2759-5

    Article  CAS  Google Scholar 

  34. Sanna D, Delogu G, Mulas M, Schirra M, Fadda A (2012) Determination of free radical scavenging activity of plant extracts through DPPH assay: an EPR and UV–Vis study. Food Anal Methods 5:759–766. https://doi.org/10.1007/s12161-011-9306-1

    Article  Google Scholar 

  35. Burda S, Oleszek W (2001) Antioxidant and antiradical activities of flavonoids. J Agric Food Chem 49:2774–2779. https://doi.org/10.1021/jf001413m

    Article  CAS  PubMed  Google Scholar 

  36. Soare JR, Dinis TC, Cunha AP, Almeida L (1997) Antioxidant activities of some extracts of Thymus zygis. Free Radical Res 26:469–478. https://doi.org/10.3109/10715769709084484

    Article  Google Scholar 

  37. Pamerla M, Reddy DR, Rao BS, Bodipati N, Murthy YL (2015) Antimicrobial evaluation of 1,4-benzoxazine derivatives. Med Chem Res 24:611–615. https://doi.org/10.1007/s00044-014-1159-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the University Grants Commission (UGC), New Delhi for finical assistance under UGC—BSR fellowship scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdish R. Badgujar.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 751 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badgujar, J.R., More, D.H. & Meshram, J.S. Synthesis, Antimicrobial and Antioxidant Activity of Pyrazole Based Sulfonamide Derivatives. Indian J Microbiol 58, 93–99 (2018). https://doi.org/10.1007/s12088-017-0689-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-017-0689-6

Keywords

Navigation