Skip to main content

Advertisement

Log in

Synthesis of new chiral 1,3,4-thiadiazole-based di- and tri-arylsulfonamide residues and evaluation of in vitro anti-HIV activity and cytotoxicity

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of new chiral 1,3,4-thiadiazole-based bis-sulfonamides 4a–4w and tri-sulfonamide analogue 5 was synthesized and evaluated as anti-HIV agents. The reaction of chiral amino acids 1 with sulfonyl chlorides 2, followed by subsequent reaction of resultant N-protected amino acids 2a–2f with thiosemicarbazide in the presence of excess phosphorous oxychloride afforded N-(1-(5-amino-1,3,4-thiadiazol-2-yl)alkyl)-4-arylsulfonamides 3a–3f. Treatment of 2a–2f with substituted sulfonyl chlorides in portions furnished the target bis-sulfonamide analogues 4a–4w in good yields, together with the unexpected 5. The new compounds were assayed against HIV-1 and HIV-2 in MT-4 cells. Compounds 4s were the most active in inhibiting HIV-1 with IC50 = 9.5 μM (SI = 6.6), suggesting to be a new lead in the development of an antiviral agent. Interestingly, compound 5 exhibited significant cytotoxicity of > 4.09 μM and could be a promising antiproliferative agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  1. Li Y, Geng J, Liu Y, Yu S, Zhao G (2013) Thiadiazole a promising structure in medicinal chemistry. ChemMedChem 8:27–41. https://doi.org/10.1002/cmdc.201200355

    Article  CAS  PubMed  Google Scholar 

  2. Hu Y, Li C-Y, Wang X-M, Yang Y-H, Zhu H-L (2014) 1,3,4-Thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem Rev 114:5572–5610. https://doi.org/10.1021/cr400131u

    Article  CAS  PubMed  Google Scholar 

  3. Jain AK, Sharma S, Vaidya A, Ravichandran V, Agrawal RK (2013) 1,3,4-Thiadiazole and its derivatives: a review on recent progress in biological activities. Chem Biol Drug Des 81:557–576. https://doi.org/10.1111/cbdd.12125

    Article  CAS  PubMed  Google Scholar 

  4. Ezabadi IR, Camoutsis C, Zoumpoulakis P, Geronikaki A, Soković M, Glamocilija J, Cirić A (2008) Sulfonamide-1,2,4-triazole derivatives as antifungal and antibacterial agents: synthesis, biological evaluation, lipophilicity, and conformational studies. Bioorg Med Chem 16:1150–1161. https://doi.org/10.1016/j.bmc.2007.10.082

    Article  CAS  PubMed  Google Scholar 

  5. Kumura K, Wakiyama Y, Ueda K, Umemura E, Watanabe Yamamoto M, Yoshida T, Ajito K (2018) Synthesis and antibacterial activity of novel lincomycin derivatives. III. Optimization of a phenyl thiadiazole moiety. J Antibiot 71:104–112. https://doi.org/10.1038/ja.2017.59

    Article  CAS  Google Scholar 

  6. Chen C, Song B, Yang S, Xu G, Bhadury PS, Jin L, Hu D, Li Q, Liu F, Xue W, Lu P, Chen Z (2007) Synthesis and antifungal activities of 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-thiadiazole and 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-oxadiazole derivatives. Bioorg Med Chem 15:3981–3989. https://doi.org/10.1016/j.bmc.2007.04.014

    Article  CAS  PubMed  Google Scholar 

  7. Liu X-H, Shi Y-X, Ma Y, Zhang C-Y, Dong W-L, Pan L, Wang B-L, Li B-J, Li Z-M (2009) Synthesis, antifungal activities and 3D-QSAR study of N-(5-substituted-1,3,4-thiadiazol-2-yl)cyclopropanecarboxamides. Eur J Med Chem 44:2782–2786. https://doi.org/10.1016/j.ejmech.2009.01.012

    Article  CAS  PubMed  Google Scholar 

  8. Klip NT, Capan G, Gursoy A, Uzun M, Satana D (2010) Synthesis, structure, and antifungal evaluation of some novel 1,2,4-triazolylmercaptoacetylthiosemicarbazide and 1,2,4-triazolylmercaptomethyl-1,3,4-thiadiazole analogs. J Enz Inhib Med Chem 25:126–131. https://doi.org/10.3109/14756360903040439

    Article  CAS  Google Scholar 

  9. Kadi AA, Al-Abdullah ES, Shehata IA, Habib EE, Ibrahim TM, El-Emam AA (2010) Synthesis, antimicrobial and anti-inflammatory activities of novel 5-(1-adamantyl)-1,3,4-thiadiazole derivatives. Eur J Med Chem 45:5006–5011. https://doi.org/10.1016/j.ejmech.2010.08.007

    Article  CAS  PubMed  Google Scholar 

  10. Tozkoparan B, Aytac SP, Gursoy S, Gunal S, Aktay G (2012) Novel 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives as dual analgesic/anti-inflammatory and antimicrobial agents. Lett Drug Des Discov 9:204–212. https://doi.org/10.2174/157018012799079626

    Article  CAS  Google Scholar 

  11. Bhat AR, Tazeem Azam A, Choi I, Athar F (2011) 3-(1,3,4-Thiadiazole-2-yl)quinoline derivatives: synthesis, characterization and antimicrobial activity. Eur J Med Chem 46:3158–3166. https://doi.org/10.1016/j.ejmech.2011.04.013

    Article  CAS  PubMed  Google Scholar 

  12. Bansode S, Kamble R (2011) Synthesis of novel 2-(3-aryl-sydnon-4-ylidene)-5-substituted-[1,3,4]-thiadiazolylamines and [1,3,4]-thiadiazol-2-yl-3-oxo-[1,2,4]-triazoles as antimicrobial agents. Med Chem Res 21:867–873. https://doi.org/10.1007/s00044-011-9596-2

    Article  CAS  Google Scholar 

  13. Onkol T, Doğruer DS, Uzun L, Adak S, Ozkan S, Sahin MF (2008) Synthesis and antimicrobial activity of new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. J Enzyme Inhib Med Chem 23:277–284. https://doi.org/10.1080/14756360701408697

    Article  CAS  PubMed  Google Scholar 

  14. Talath S, Gadad AK (2006) Synthesis, antibacterial and antitubercular activities of some 7-[4-(5-amino-[1,3,4]thiadiazole-2-sulfonyl)-piperazin-1-yl]fluoroquinolonic derivatives. Eur J Med Chem 41:918–924. https://doi.org/10.1016/j.ejmech.2006.03.027

    Article  CAS  PubMed  Google Scholar 

  15. Foroumadi A, Soltani F, Jabini R, Moshafi MH, Rasnani FM (2004) Antituberculosis agents X. Synthesis and evaluation of in vitro antituberculosis activity of 2-(5-nitro-2-furyl)- and 2-(1-methyl-5-nitro-lH-imidazol-2-yl)-1,3,4-thiadiazole derivatives. Arch Pharm Res 27:502–506. https://doi.org/10.1007/BF02980122

    Article  CAS  PubMed  Google Scholar 

  16. Chitra S, Paul N, Muthusubramanian S, Manisankar P, Yogeeswari P, Sriram D (2011) Synthesis of 3-heteroarylthioquinoline derivatives and their in vitro antituberculosis and cytotoxicity studies. Eur J Med Chem 46:4897–4903. https://doi.org/10.1016/j.ejmech.2011.07.046

    Article  CAS  PubMed  Google Scholar 

  17. Kumar D, Kumar NM, Chang K-H, Shah K (2010) Synthesis and anticancer activity of 5-(3-indolyl)-1,3,4-thiadiazoles. Eur J Med Chem 45:4664–4668. https://doi.org/10.1016/j.ejmech.2010.07.023

    Article  CAS  PubMed  Google Scholar 

  18. Bhole RP, Bhusari KP (2010) Synthesis and antitumor activity of (4-hydroxyphenyl)[5-substituted alkyl/aryl)-2-thioxo-1,3,4-thiadiazol-3-yl]methanone and [(3,4-disubstituted)-1,3-thiazol-2ylidene]-4-hydroxybenzohyd-razide. Med Chem Res 20:695–704. https://doi.org/10.1007/s00044-010-9371-9

    Article  CAS  Google Scholar 

  19. Chou J, Lai S, Pan S, Jow G, Chern J, Guh J (2003) Investigation of anticancer mechanism of thiadiazole-based compound in human non-small cell lung cancer A549 cells. Biochem Pharmacol 66:115–124. https://doi.org/10.1016/S0006-2952(03)00254-5

    Article  CAS  PubMed  Google Scholar 

  20. Matysiak J, Opolski A (2006) Synthesis and antiproliferative activity of N-substituted 2-amino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles. Bioorg Med Chem 14:4483–4489. https://doi.org/10.1016/j.bmc.2006.02.027

    Article  CAS  PubMed  Google Scholar 

  21. Wei M, Feng L, Li X, Zhou X, Shao Z (2009) Synthesis of new chiral 2,5-disubstituted 1,3,4-thiadiazoles possessing γ-butenolide moiety and preliminary evaluation of in vitro anticancer activity. Eur J Med Chem 44:3340–3344. https://doi.org/10.1016/j.ejmech.2009.03.023

    Article  CAS  PubMed  Google Scholar 

  22. Sun S, Yang Y, Li W, Zhang Y, Wang X, Tang J, Zhu H (2011) Synthesis, biological evaluation and molecular docking studies of 1,3,4-thiadiazole derivatives containing 1,4-benzodioxan as potential antitumor agents. Bioorg Med Chem Lett 21:6116–6121. https://doi.org/10.1016/j.bmcl.2011.08.039

    Article  CAS  PubMed  Google Scholar 

  23. Moshaf MH, Sorkhi M, Emami S, Nakhjiri M, Yahya-Meymandi A, Negahbani AS, Siavoshi F, Omrani M, Alipour E, Vosooghi M, Shafiee A, Foroumadi A (2011) 5-Nitroimidazole-based 1,3,4-thiadiazoles: heterocyclic analogs of metronidazole as anti-helicobacter pylori agents. Arch Pharm Chem Life Sci 344:178–183. https://doi.org/10.1002/ardp.201000013

    Article  CAS  Google Scholar 

  24. Mirzaei J, Siavoshi F, Emami S, Safari F, Khoshayand MR, Shafiee A, Foroumadi A (2008) Synthesis and in vitro anti-helicobacter pylori activity of N-[5-(5-nitro-2-heteroaryl)-1,3,4-thiadiazol-2-yl]thiomorpholines and related compounds. Eur J Med Chem 43:1575–1580. https://doi.org/10.1016/j.ejmech.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  25. Rajak H, Deshmukh R, Aggarwal N, Kashaw S, Kharya MD, Mishra P (2009) Synthesis of novel 2,5-disubstituted 1,3,4-thiadiazoles for their potential anticonvulsant activity: pharmacophoric model studies. Arch Pharm Chem Life Sci 342:453–461. https://doi.org/10.1002/ardp.200800213

    Article  CAS  Google Scholar 

  26. Hamad NS, Al-Haidery NH, Al-Masoudi IA, Sabri M, Sabri L, Al-Masoudi NA (2010) Amino acid derivatives, part 4: synthesis and anti-HIV activity of new naphthalene derivatives. Arch Pharm Chem Life Sci 343:397–403. https://doi.org/10.1002/ardp.200900293

    Article  CAS  Google Scholar 

  27. Ijichi K, Fujiwara M, Nagano H, Matsumoto Y, Hanasaki Y, Ide T, Katsuura K, Takayama H, Shirakawa S, Aimi N, Shigeta S, Konno K, Matsushima M, Yokota T, Baba M (1996) Anti-HIV-1 activity of thiadiazole derivatives: structure-activity relationship, reverse transcriptase inhibition, and lipophilicity. Antivir Res 31:87–94. https://doi.org/10.1016/0166-3542(96)00950-3

    Article  CAS  PubMed  Google Scholar 

  28. Sneader W (2005) Drug discovery: a history. Wiley, West Sussex. https://doi.org/10.1002/0470015535

    Book  Google Scholar 

  29. Iyer G, Bellantone R, Taft D (1999) In vitro characterization of the erythrocyte distribution of methazolamide: a model of erythrocyte transport and binding kinetics. J Pharmacokinet Biopharm 27:45–66. https://doi.org/10.1023/A:1020630712388

    Article  CAS  PubMed  Google Scholar 

  30. Hall BS, Wilkinson SR (2012) Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob Agents Chemother 56:115–123. https://doi.org/10.1128/AAC.05135-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Messer WS (2002) The utility of muscarinic agonists in the treatment of Alzheimer’s disease. J Mol Neurosci MN 19:187–193. https://doi.org/10.1007/s12031-002-0031-5

    Article  CAS  PubMed  Google Scholar 

  32. Hansch C, Sammes PG, Taylor JB (1990) Comprehensive medicinal chemistry, vol 2. Pergamon Press, Oxford, Chap 7.1

  33. Supuran Claudiu T (2017) Special issue: sulfonamides. Molecules 22:1642–1646. https://doi.org/10.3390/molecules22101642

    Article  CAS  PubMed Central  Google Scholar 

  34. Iqbal Z, Hameed S, Ali S, Tehseen Y, Shahid M, Iqbal J (2015) Synthesis, characterization, hypoglycemic and aldose reductase inhibition activity of arylsulfonylspiro[fluorene-9,5′-imidazolidine]-2′,4′-diones. Eur J Med Chem 98:127–138. https://doi.org/10.1016/j.ejmech.2015.05.011

    Article  CAS  PubMed  Google Scholar 

  35. Abbas MA, Hameed S, Farman M, Kressler J, Mahmood N (2015) Conjugates of degraded and oxidized hydroxyethyl starch and sulfonylureas: synthesis, characterization, and in vivo antidiabetic Activity. Bioconj Chem 26:120–127. https://doi.org/10.1021/bc500509a

    Article  CAS  Google Scholar 

  36. Khan MH, Hameed S, Farman M, Al-Masoudi NA, Stoeckli-Evans HZ (2015) Synthesis, anti-HIV activity and molecular modeling study of 3-aryl-6-adamantylmethyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives. Z Naturforsch 70b:609–616. https://doi.org/10.1515/znb-2015-0032

    Article  CAS  Google Scholar 

  37. Willker W, Leibfritz D, Kerssebaum R, Bermel W (1993) Gradient selection in inverse heteronuclear correlation spectroscopy. Magn Reson Chem 31:287–292. https://doi.org/10.1002/mrc.1260310315

    Article  CAS  Google Scholar 

  38. Pannecouque C, Daelemans D, De Clercq E (2008) Tetrazolium-based colorimetric assay for the detection of HIV replication inhibitors:revisited, 20 years later. Nat Protoc 3:427–434. https://doi.org/10.1038/nprot.2007.517

    Article  CAS  PubMed  Google Scholar 

  39. Hargrave KD, Proudfoot JR, Grozinger KG, Cullen E, Kapadia SR, Patel UR, Fuchs VU, Mauldin SC et al (1991) J Med Chem 34:2231–2241. https://doi.org/10.1021/jm00111a045

    Article  CAS  PubMed  Google Scholar 

  40. Mitsuya H, Weinhold KJ, Furman PA, St Clair MH, Lehrmann SN, Gallo RC, Bolognesi D, Barry DW, Broder S (1985) 3′-Azido-3′-deoxythymidine (BW A509U), an antiviral agent that inihibits the ineffectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associates virus in vitro. Proc Natl Acad Sci USA 82:7096–7100

    Article  CAS  Google Scholar 

  41. Coates JA, Cammack N, Jenkinson HJ, Jowett AJ, Pearson BA, Penn CR, Rouse PL, Viner KC, Cameron JM (1992) The separated enantiomers of 2′-deoxy-3′-thiacytidine (BCH 189) both inhibit human immunodeficiency virus replication in vitro. Antimicrob Agents Chemother 36:733–739. https://doi.org/10.1128/AAC.36.4.733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Popovic M, Sarngadharan MG, Read E, Gallo RC (1984) Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224:497–500. https://doi.org/10.1126/science.6200935

    Article  CAS  PubMed  Google Scholar 

  43. Barré-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vezinet-Brun F, Rouzioux C, Rozenbaum W, Montagnier L (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871. https://doi.org/10.1126/science.6189183

    Article  PubMed  Google Scholar 

  44. Miyoshi I, Taguchi H, Kobonishi I, Yoshimoto S, Ohtsuki Y, Shiraishi Y, Akagi T (1982) Type C virus-producing cell lines derived from adult T cell leukemia. Gann Monogr Cancer Res 28:219–228

    Google Scholar 

Download references

Acknowledgements

We thank Prof. C. Pannecouque of Rega Institute for Medical Research, Katholieke Universiteit, Leuven, Belgium, for the anti-HIV screening.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahid Hameed or Najim Aboud Al-Masoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafique, M., Hameed, S., Naseer, M.M. et al. Synthesis of new chiral 1,3,4-thiadiazole-based di- and tri-arylsulfonamide residues and evaluation of in vitro anti-HIV activity and cytotoxicity. Mol Divers 22, 957–968 (2018). https://doi.org/10.1007/s11030-018-9851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9851-2

Keywords

Navigation