Skip to main content
Log in

Application of 2,4-bis(halomethyl)quinoline: synthesis and biological activities of 2,4-bis(benzofuran-2-yl)- and 2,4-bis(aroxymethyl)quinolines

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In the present investigation, the synthesis of a new type of halomethylquinoline building block, i.e., ethyl 4-(bromomethyl)-2-(chloromethyl)quinoline-3-carboxylate, and its synthetic applications in the reaction with salicylaldehydes or phenols to make a range of structurally novel and intriguing 2,4-bis(benzofuran-2-yl)quinoline- and 2,4-bis(aroxymethyl)quinoline-3-carboxylic acids is described. Our newly synthesized compounds belong to a new class of quinoline derivatives, and their structures were elucidated on the basis of their spectral data and elemental analyses. Screening for in vitro anti-tubercular against Mycobacterium smegmatis and anti-bacterial activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa was carried out. Compounds 5e and 5g showed significant anti-tubercular activity comparable with the reference rifampicin and might be used as promising candidates for further investigation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Kaslow CE, Schlatter JM (1995) Halomethylquinolines. J Am Chem Soc 77:1054–1055. https://doi.org/10.1021/ja01609a087

    Article  Google Scholar 

  2. Mathes W, Schüly H (1963) (Halogenomethyl)pyridines and (Halogenomethyl)quinolines. Angew Chem Int Ed 2:144–149. https://doi.org/10.1002/anie.196301441

    Article  Google Scholar 

  3. Lyle RE, Portlock DE, Kane MJ, Bristol JA (1972) Benzylic halogenation of methylquinones. J Org Chem 37:3967–3968. https://doi.org/10.1021/jo00797a053

    Article  CAS  Google Scholar 

  4. Kóródi F (1991) Side-chain chlorination of methylquinolines. J Heterocycl Chem 28:1549–1552. https://doi.org/10.1002/jhet.5570280614

    Article  Google Scholar 

  5. Xie Y, Li L (2014) Microwave-assisted α-halogenation of 2-methylquinolines with tetrabutyl ammonium iodide and 1,2-dichloroethane (1,2-dibromoethane). Tetrahedron Lett 55:3892–3895. https://doi.org/10.1016/j.tetlet.2014.04.023

    Article  CAS  Google Scholar 

  6. Bi WZ, Qu C, Chen XL, Wei SK, Qu LB, Liu SY, Sun K, Zhao YF (2018) Copper(II) catalyzed heterobenzylic C(sp3)-H activation: two efficient halogenation methodologies towards heterobenzyl halides. Tetrahedron 74:1908–1917. https://doi.org/10.1016/j.tet.2018.02.058

    Article  CAS  Google Scholar 

  7. Su H, Bao M, Huang J, Qiu L, Xu X (2019) Silver-catalyzed carbocyclization of azide-tethered alkynes: expeditious synthesis of polysubstituted quinolines. Adv Synth Catal 361:826–831. https://doi.org/10.1002/adsc.201801425

    Article  CAS  Google Scholar 

  8. Hamaguchi W, Masuda N, Isomura M, Miyamoto S, Kikuchi S, Amano Y, Honbou K, Mihara T, Watanabe T (2013) Design and synthesis of novel benzimidazole derivatives as phosphodiesterase 10A inhibitors with reduced CYP1A2 inhibition. Bioorg Med Chem 21:7612–7623. https://doi.org/10.1016/j.bmc.2013.10.035

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Jin H, Zhou H, Rothfuss J, Tu Z (2013) Synthesis and in vitro biological evaluation of pyrazole group-containing analogues for PDE10A. Med Chem Commun 4:443–449. https://doi.org/10.1039/C2MD20239E

    Article  CAS  Google Scholar 

  10. Mikata Y, Nakanishi K, Nakagaki F, Kizu A, Konno H (2015) Off-on, ratiometric, and on-off fluorescence responses of thioether-linked bisquinolines toward Hg2+ and Fe3+ ions. Eur J Inorg Chem 2015:3769–3780. https://doi.org/10.1002/ejic.201500220

    Article  CAS  Google Scholar 

  11. Mikata Y, Wakamatsu M, Yano S (2005) Tetrakis(2-quinolinylmethyl)ethylenediamine (TQEN) as a new fluorescent sensor for zinc. Dalton Trans 34:545–550. https://doi.org/10.1039/B411924J

    Article  Google Scholar 

  12. Moret V, Laras Y, Cresteil T, Aubert G, Ping DQ, Di C, Barthélémy-Requin M, Béclin C, Peyrot V, Allegro D, Rolland A, Angelis FD, Gatti E, Pierre P, Pasquini L, Petrucci E, Testa U, Kraus JL (2009) Discovery of a new family of bis-8-hydroxyquinoline substituted benzylamines with pro-apoptotic activity in cancer cells: synthesis, structure–activity relationship, and action mechanism studies. Eur J Med Chem 44:558–567. https://doi.org/10.1016/j.ejmech.2008.03.042

    Article  CAS  PubMed  Google Scholar 

  13. Ye L, Ou X, Tian Y, Yu B, Luo Y, Feng B, Lin H, Zhang J, Wu S (2013) Indazoles as potential c-met inhibitors: design, synthesis and molecular docking studies. Eur J Med Chem 65:112–118. https://doi.org/10.1016/j.ejmech.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  14. Yang Y, Wang H, Ma H (2017) Unprecedented reaction pathway of sterically crowded calcium complexes: sequential C–N bond cleavage reactions induced by C–H bond activations. Chem Asian J 12:239–247. https://doi.org/10.1002/asia.201601497

    Article  CAS  PubMed  Google Scholar 

  15. Ladani GG, Patel MP (2015) Novel 1,3,4-oxadiazole motifs bearing a quinoline nucleus: synthesis, characterization and biological evaluation of their antimicrobial, antitubercular, antimalarial and cytotoxic activities. New J Chem 39:9848–9857. https://doi.org/10.1039/C5NJ02566D

    Article  CAS  Google Scholar 

  16. Dalley NK, Xue G, Bradshaw JS, Zhang XX, Harrison RG, Savage PB, Krakowiak KE, Izatt RM (2001) A new diaza-18-crown-6 ligand containing two quinolin-8-ylmethyl side arms: crystal structures and characterization of the ligand, the protonated ligand and its mononuclear barium(II) and dinuclear copper(II) complexes. J Heterocycl Chem 38:1–9. https://doi.org/10.1002/jhet.5570380101

    Article  CAS  Google Scholar 

  17. Muscia GC, Cazorla SI, Frank FM, Borosky GL, Buldain GY, Asís SE, Malchiodi EL (2011) Synthesis, trypanocidal activity and molecular modeling studies of 2-alkylaminomethyl quinoline derivatives. Eur J Med Chem 46:3696–3703. https://doi.org/10.1016/j.ejmech.2011.05.035

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Zou H (2018) A simple and facile synthesis of 4-phenylquinoline-fused pyrrolidin-2-ones. J Heterocycl Chem 55:346–350. https://doi.org/10.1002/jhet.3052

    Article  CAS  Google Scholar 

  19. Li Y, Wang Y, Zou H (2017) A general three-step one-pot synthesis of novel (E)-6-chloro-2-(aryl/hetarylvinyl)quinoline-3-carboxylic acids. Mol Divers 21:463–473. https://doi.org/10.1007/s11030-017-9730-2

    Article  CAS  PubMed  Google Scholar 

  20. Li Y (2015) A facile synthesis and application of ethyl 6-(bromomethyl)- [1,3]dioxolo[4,5-g]quinoline-7-carboxylate. Res Chem Intermed 41:4977–4985. https://doi.org/10.1007/s11164-014-1581-1

    Article  CAS  Google Scholar 

  21. Gao W, Xing X, Li Y, Lan S (2014) A novel construction of quino-fused tropone skeleton: first synthesis of 12H-benzo[4,5]cyclohepta[1,2-b]quinolin-12-one derivatives. Tetrahedron 70:2180–2189. https://doi.org/10.1016/j.tet.2014.01.049

    Article  CAS  Google Scholar 

  22. Gao W, Liu J, Jiang Y, Li Y (2011) First synthesis of 2-(benzofuran-2-yl)-6,7-methylene dioxyquinoline-3-carboxylic acid derivatives. Beilstein J Org Chem 7:210–217. https://doi.org/10.3762/bjoc.7.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ryabukhin SV, Volochnyuk DM, Plaskon AS, Naumchik VS, Tolmachev AA (2007) Chlorotrimethylsilane-mediated Friedländer synthesis of polysubstituted quinolines. Synthesis 2007:1214–1224. https://doi.org/10.1055/s-2007-966003

    Article  CAS  Google Scholar 

  24. Degtyarenko AS, Tolmachev AA, Volovenko YM, Tverdokhlebov AV (2007) Chlorotrimethylsilane-mediated Friedländer synthesis of 2-(α-chloroalkyl)quinoline derivatives. Synthesis 2007:3891–3895. https://doi.org/10.1055/s-2007-990869

    Article  CAS  Google Scholar 

  25. Wu J, Xia HG, Gao K (2006) Molecular iodine: a highly efficient catalyst in the synthesis of quinolines via Friedländer annulation. Org Biomol Chem 4:126–129. https://doi.org/10.1039/B514635F

    Article  CAS  PubMed  Google Scholar 

  26. Luche JL (1998) Synthetic organic sonochemistry. Plenum Press, New York

    Book  Google Scholar 

  27. Williamson AW (1852) XXII.—On etherification. Q J Chem Soc 4:229–239. https://doi.org/10.1039/QJ8520400229

    Article  Google Scholar 

  28. Dermer OC (1934) Metallic salts of alcohols and alcohol analogs. Chem Rev 14:385–430. https://doi.org/10.1021/cr60049a002

    Article  CAS  Google Scholar 

  29. Aikins JA, Haurez M, Rizzo JR, Van Hoeck JP, Brione W, Kestemont JP, Stevens C, Lemair X, Stephenson GA, Marlot E, Forst M, Houpis IN (2005) Synthesis of a peroxime proliferator activated receptor (PPAR) α/γ agonist via stereocontrolled Williamson ether synthesis and stereospecific SN2 reaction of S-2-chloro propionic acid with phenoxides. J Org Chem 70:4695–4705. https://doi.org/10.1021/jo050268e

    Article  CAS  PubMed  Google Scholar 

  30. Shibatomi K, Kotozaki M, Sasaki N, Fujisawa I, Iwasa S (2015) Williamson ether synthesis with phenols at a tertiary stereogenic carbon: formal enantioselective phenoxylation of β-Keto Esters. Chem Eur J 21:14095–14098. https://doi.org/10.1002/chem.201502042

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Chang M, Zhang H, Li Y (2016) Convenient synthesis of 12-methyl[1]benzoxepino- [3,4-b]quinolin-13(6H)-ones. Chem Heterocycl Compd 54:650–657. https://doi.org/10.1007/s10593-018-2322-y

    Article  CAS  Google Scholar 

  32. Renuka J, Reddy KI, Srihari K, Jeankumar VU, Shravan M, Sridevi JP, Sriram D (2014) Design, synthesis, biological evaluation of substituted benzofurans as DNA gyraseB inhibitors of Mycobacterium tuberculosis. Bioorg Med Chem 22:4924–4934. https://doi.org/10.1016/j.bmc.2014.06.041

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Chen F, Di H, Xu Y, Xiao Q, Wang X, Wei H, Lu Y, Zhang L, Zhu J, Sheng C, Lan L, Li J (2016) Discovery of potent benzofuran-derived diapophytoene desaturase (CrtN) inhibitors with enhanced oral bioavailability for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. J Med Chem 59:3215–3230. https://doi.org/10.1021/acs.jmedchem.5b01984

    Article  CAS  PubMed  Google Scholar 

  34. Xu Z, Zhao S, Lv Z, Feng L, Wang Y, Zhang F, Bai L, Deng J (2019) Benzofuran derivatives and their anti-tubercular, anti-bacterial activities. Eur J Med Chem 162:266–276. https://doi.org/10.1016/j.ejmech.2018.11.025

    Article  CAS  PubMed  Google Scholar 

  35. Koga H, Itoh A, Murayama S, Suzue S, Irikura T (1980) Structure-activity relationships of antibacterial 6,7- and 7,8-disubstituted 1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acids. J Med Chem 23:1358–1363. https://doi.org/10.1021/jm00186a014

    Article  CAS  PubMed  Google Scholar 

  36. Suresh N, Nagesh HN, Renuka J, Rajput V, Sharma R, Khan IA, Gowri CSKV (2014) Synthesis and evaluation of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(4-(2- (4-substituted piperazin-1-yl)acetyl)piperazin-1-yl)quinoline-3-carboxylic acid derivatives as anti-tubercular and antibacterial agents. Eur J Med Chem 71:324–332. https://doi.org/10.1016/j.ejmech.2013.10.055

    Article  CAS  PubMed  Google Scholar 

  37. Kumar G, Sathe A, Krishna VS, Sriram D, Jachak SM (2018) Synthesis and biological evaluation of dihydroquinoline carboxamide derivatives as anti-tubercular agents. Eur J Med Chem 157:1–13. https://doi.org/10.1016/j.ejmech.2018.07.046

    Article  CAS  PubMed  Google Scholar 

  38. Rodríguez JC, Ruiz M, López M, Royo G (2002) In vitro activity of moxifloxacin, levofloxacin, gatifloxacin and linezolid against Mycobacterium tuberculosis. Int J Antimicrob Agents 20:464–467. https://doi.org/10.1016/S0924-8579(02)00239-X

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Scientific Research Foundation of the National Natural Science Foundation of China (Grant Nos. 21476028 and 21402011) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Li or Yu Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2090 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, Q., Li, Z. et al. Application of 2,4-bis(halomethyl)quinoline: synthesis and biological activities of 2,4-bis(benzofuran-2-yl)- and 2,4-bis(aroxymethyl)quinolines. Mol Divers 24, 167–178 (2020). https://doi.org/10.1007/s11030-019-09938-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09938-3

Keywords

Navigation