Skip to main content

Advertisement

Log in

5-Amino-pyrazoles: potent reagents in organic and medicinal synthesis

  • Comprehensive Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

5-Amino-pyrazoles have proven to be a class of fascinating and privileged organic tools for the construction of diverse heterocyclic or fused heterocyclic scaffolds. This review presents comprehensively the applications of 5-amino-pyrazoles as versatile synthetic building blocks in the synthesis of remarkable organic molecules with an emphasis on versatile functionalities. Following a brief introduction of synthesis methods, planning strategies to construct organic compounds, particularly diverse heterocyclic scaffolds, such as poly-substituted heterocyclic compounds and fused heterocyclic compounds via 5-amino-pyrazoles, have been summarized. Fused heterocycles are classified as bicyclic, tricyclic, tetracyclic, and spiro-fused pyrazole derivatives. These outstanding compounds synthesized via wide variety of approaches include conventional reactions, one-pot multi-component reactions, cyclocondensation, cascade/tandem protocols, and coupling reactions. 5-Amino-pyrazoles represent a class of promising functional reagents, similar to the biologically active compounds, highlighted with diverse applications especially in the field of pharmaceutics and medicinal chemistry. Notably, this critical review covers the articles published from 1981 to 2018.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Scheme 69
Scheme 70
Scheme 71
Scheme 72
Scheme 73
Scheme 74
Scheme 75
Scheme 76
Scheme 77
Scheme 78
Scheme 79
Scheme 80
Scheme 81
Scheme 82
Scheme 83
Scheme 84
Scheme 85
Scheme 86
Scheme 87
Scheme 88
Scheme 89
Scheme 90

Similar content being viewed by others

References

  1. Hollis A, Ahmed Z (2013) Preserving antibiotics, rationally. N Engl J Med 369:2474–2476

    Article  CAS  PubMed  Google Scholar 

  2. Gamage SA, Spicer JA, Rewcastle GW, Milton J, Sohal S, Dangerfield W, Mistry P, Vicker N, Charlton PA, Denny WA (2002) Structure–activity relationships for pyrido-, imidazo-, pyrazolo-, pyrazino-, and pyrrolophenazinecarboxamides as topoisomerase-targeted anticancer agents. J Med Chem 45:740–743

    Article  CAS  PubMed  Google Scholar 

  3. Cabrele C, Reiser O (2016) The modern face of synthetic heterocyclic chemistry. J Org Chem 81:10109–10125

    Article  CAS  PubMed  Google Scholar 

  4. Gomtsyan A (2012) Heterocycles in drugs and drug discovery. Chem Heterocycl Compd 48:7–10

    Article  CAS  Google Scholar 

  5. Yamada M, Honma I (2005) Anhydrous proton conducting polymer electrolytes based on poly (vinylphosphonic acid)-heterocycle composite material. Polymer 46:2986–2992

    Article  CAS  Google Scholar 

  6. Kusama H, Orita H, Sugihara H (2008) TiO2 band shift by nitrogen-containing heterocycles in dye-sensitized solar cells: a periodic density functional theory study. Langmuir 24:4411–4419

    Article  CAS  PubMed  Google Scholar 

  7. Dedeian K, Shi J, Shepherd N, Forsythe E, Morton DC (2005) Photophysical and electrochemical properties of heteroleptic tris-cyclometalated iridium (III) complexes. Inorg Chem 44:4445–4447

    Article  CAS  PubMed  Google Scholar 

  8. Kuwata S, Ikariya T (2011) β-protic pyrazole and N-heterocyclic carbene complexes: synthesis, properties, and metal–ligand cooperative bifunctional catalysis. Chem Eur J 17:3542–3556

    Article  CAS  PubMed  Google Scholar 

  9. Vitaku E, Smith DT, Njardarson JT (2014) Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among us FDA approved pharmaceuticals: miniperspective. J Med Chem 57:10257–10274

    Article  CAS  PubMed  Google Scholar 

  10. Ohi N, Sato N, Soejima M, Doko T, Terauchi T, Naoe Y, Motoki T (2008) Pyrazole compound and medicinal composition containing the same. Google patents

  11. Kumar V, Kaur K, Gupta GK, Sharma AK (2013) Pyrazole containing natural products: synthetic preview and biological significance. Eur J Med Chem 69:735–753

    Article  CAS  PubMed  Google Scholar 

  12. Kumar KA, Jayaroopa P (2013) Pyrazoles: synthetic strategies and their pharmaceutical applications—an overview. Int J PharmTech Res 5:1473–1486

    Google Scholar 

  13. Noe F, Fowden L (1959) Α-amino-β-(pyrazolyl-N) propionic acid: a new amino-acid from Citrullus vulgaris (water melon). Nature 184:BA-69

    Article  Google Scholar 

  14. Ahadi S, Mirzaei P, Bazgir A (2010) One-pot, three-component synthesis of 3-(5-amino-1H-pyrazol-4-yl)-3-(2-hydroxy-4, 4-dimethyl-6-oxocyclohex-1-enyl) indolin-2-ones. Synth Commun 40:1224–1230

    Article  CAS  Google Scholar 

  15. Wong FF, Wang L-Y, Uramaru N, Chiang H-H (2014) Synthesis and structural identification of 5-amino-4-hydroxyiminopyrazoles and (E)-N1-aryl-3-aryl-4-[(substituted pyrazolyl) diazenyl] pyrazoles from 5-aminopyrazoles with ethyl nitrite or sodium nitrite. Tetrahedron 70:7977–7982

    Article  CAS  Google Scholar 

  16. Thomas K (2012) In documents on pain drug, signs of doubt and deception. New York Times, June 29

  17. Maranhão-Filho P, Dib E, Rocha CE, Santos Filho WR (2016) Neurite óptica isquêmica devida à dose inédita de sildenafila. Rev Bras Neurol 51:48–52

    Google Scholar 

  18. Ramazani A, Souldozi A (2008) Iminophosphorane-mediated one-pot synthesis of 1,3,4-oxadiazole derivatives. Arkivoc 16:235–242

    Google Scholar 

  19. Marinozzi M, Marcelli G, Carotti A, Natalini B (2014) One-pot, telescoped synthesis of N-aryl-5-aminopyrazoles from anilines in environmentally benign conditions. RSC Adv 4:7019–7023

    Article  CAS  Google Scholar 

  20. Basu S, Prathipati P, Thorat S, Ansari S, Patel M, Jain V, Jinugu RR, Niranjan S, De S, Reddy S (2017) Rational design, synthesis, and structure–activity relationships of 5-amino-1H-pyrazole-4-carboxylic acid derivatives as protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem 25:67–74

    Article  CAS  PubMed  Google Scholar 

  21. Das J, Moquin RV, Dyckman AJ, Li T, Pitt S, Zhang R, Shen DR, McIntyre KW, Gillooly K, Doweyko AM (2010) 5-amino-pyrazoles as potent and selective p38α inhibitors. Bioorg Med Chem Lett 20:6886–6889

    Article  CAS  PubMed  Google Scholar 

  22. Wiley RH, Behr LC (1967) Pyrazoles, pyrazolines, pyrazolidines, indazoles and condensed rings. Wiley, Hoboken

    Book  Google Scholar 

  23. Wiley RH, Wiley PF (1964) Pyrazolones, pyrazolidones, and derivatives, vol 20. Wiley, Hoboken

    Book  Google Scholar 

  24. Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A (2011) From 2000 to mid-2010: a fruitful decade for the synthesis of pyrazoles. Chem Rev 111:6984–7034

    Article  CAS  PubMed  Google Scholar 

  25. Aggarwal R, Kumar V, Kumar R, Singh SP (2011) Approaches towards the synthesis of 5-aminopyrazoles. Beilstein J Org Chem 7:179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abu Elmaati TM, El-Taweel FM (2004) New trends in the chemistry of 5-aminopyrazoles. J Heterocycl Chem 41:109–134

    Article  Google Scholar 

  27. Bagley MC, Davis T, Dix MC, Widdowson CS, Kipling D (2006) Microwave-assisted synthesis of N-pyrazole ureas and the p38α inhibitor BIRB 796 for study into accelerated cell ageing. Org Biomol Chem 4:4158–4164

    Article  CAS  PubMed  Google Scholar 

  28. Su WN, Lin TP, Cheng KM, Sung KC, Lin SK, Wong FF (2010) An efficient one-pot synthesis of N-(1, 3-diphenyl-1H-pyrazol-5-yl) amides. J Heterocycl Chem 47:831–837

    Article  CAS  Google Scholar 

  29. Kim BR, Sung GH, Ryu KE, Lee S-G, Yoon HJ, Shin D-S, Yoon Y-J (2015) Direct synthesis of pyrazoles from esters using tert-butoxide-assisted C–(C [double bond, length as m-dash] O) coupling. Chem Commun 51:9201–9204

    Article  CAS  Google Scholar 

  30. Zora M, Kivrak A (2011) Synthesis of pyrazoles via CuI-mediated electrophilic cyclizations of α, β-alkynic hydrazones. J Org Chem 76:9379–9390

    Article  CAS  PubMed  Google Scholar 

  31. Reddy GJ, Latha D, Rao KS (2004) A clean and rapid synthesis of 5-amino and 5-alkoxycarbonylpyrazoles using montomorillonite under acid free conditions. Org Prep Proced Int 36:494–498

    Article  CAS  Google Scholar 

  32. Kirkham JD, Edeson SJ, Stokes S, Harrity JP (2012) Synthesis of ynone trifluoroborates toward functionalized pyrazoles. Org Lett 14:5354–5357

    Article  CAS  PubMed  Google Scholar 

  33. Senadi GC, Hu W-P, Lu T-Y, Garkhedkar AM, Vandavasi JK, Wang J-J (2015) I2–TBHP-catalyzed oxidative cross-coupling of N-sulfonyl hydrazones and isocyanides to 5-aminopyrazoles. Org Lett 17:1521–1524

    Article  CAS  PubMed  Google Scholar 

  34. Ma C, Wen P, Li J, Han X, Wu Z, Huang G (2016) Palladium and copper cocatalyzed intermolecular cyclization reaction: synthesis of 5-aminopyrazole derivatives. Adv Synth Catal 358:1073–1077

    Article  CAS  Google Scholar 

  35. Suryakiran N, Prabhakar P, Venkateswarlu Y (2008) Facile tert-butoxycarbonylation of alcohols, phenols, and amines using BiCl3 as a mild and efficient catalyst. Synth Commun 38:177–185

    Article  CAS  Google Scholar 

  36. Motamedi A, Sattari E, Mirzaei P, Armaghan M, Bazgir A (2014) An efficient and green synthesis of phthalide-fused pyrazole and pyrimidine derivatives. Tetrahedron Lett 55:2366–2368

    Article  CAS  Google Scholar 

  37. Kim MM, Ruck RT, Zhao D, Huffman MA (2008) Green iodination of pyrazoles with iodine/hydrogen peroxide in water. Tetrahedron Lett 49:4026–4028

    Article  CAS  Google Scholar 

  38. Shaabani A, Afshari R, Hooshmand SE (2016) Passerini three-component cascade reactions in deep eutectic solvent: an environmentally benign and rapid system for the synthesis of α-acyloxyamides. Res Chem Intermed 42:5607–5616

    Article  CAS  Google Scholar 

  39. Ahadi S, Shakibaei GI, Mirzaei P, Bazgir A (2008) A clean synthesis of 3, 3-bis (5-amino-1H-pyrazol-4-yl)-indolin-2-one derivatives. Heterocycles 75:2293–2299

    Article  CAS  Google Scholar 

  40. Khorrami AR, Faraji F, Bazgir A (2010) Ultrasound-assisted three-component synthesis of 3-(5-amino-1H-pyrazol-4-yl)-3-(2-hydroxy-4, 4-dimethyl-6-oxocyclohex-1-enyl) indolin-2-ones in water. Ultrason Sonochem 17:587–591

    Article  CAS  PubMed  Google Scholar 

  41. Chang E-C, Chen C-Y, Wang L-Y, Huang Y-Y, Yeh M-Y, Wong FF (2013) Synthesis of 5-arylamino-1-arylpyrazoles from 5-aminopyrazoles with arylhalides via CuI catalyzed Ullman coupling reaction. Tetrahedron 69:570–576

    Article  CAS  Google Scholar 

  42. Antilla JC, Baskin JM, Barder TE, Buchwald SL (2004) Copper–diamine-catalyzed N-arylation of pyrroles, pyrazoles, indazoles, imidazoles, and triazoles. J Org Chem 69:5578–5587

    Article  CAS  PubMed  Google Scholar 

  43. Ma D, Cai Q, Zhang H (2003) Mild method for Ullmann coupling reaction of amines and aryl halides. Org Lett 5:2453–2455

    Article  CAS  PubMed  Google Scholar 

  44. Monnier F, Taillefer M (2009) Catalytic C–C, C–N, and C–O Ullmann-type coupling reactions. Angew Chem Int Ed 48:6954–6971

    Article  CAS  Google Scholar 

  45. Dounay AB, Overman LE (2003) The asymmetric intramolecular heck reaction in natural product total synth. Chem Rev 103:2945–2964

    Article  CAS  PubMed  Google Scholar 

  46. Zeni G, Larock RC (2004) Synthesis of heterocycles via palladium π-olefin and π-alkyne chemistry. Chem Rev 104:2285–2310

    Article  CAS  PubMed  Google Scholar 

  47. D’Souza DM, Mueller TJ (2007) Multi-component syntheses of heterocycles by transition-metal catalysis. Chem Soc Rev 36:1095–1108

    Article  PubMed  Google Scholar 

  48. Abdelmoniem AM, Ramadan MA, Ghozlan SAS, Abdelhamid IA (2017) New synthesis of N-(1H-pyrazol-5-yl)-hexahydroquinoline-3-carbonitrile and octahydropyrazolo [4′, 3′: 5, 6] pyrimido [1,2-a] quinoline-6-carbonitrile derivatives from the cyclic β-enaminones. J Heterocycl Chem 54:1193–1198

    Article  CAS  Google Scholar 

  49. Sidhom A, Soulé J-F, Doucet H, Allouche F (2018) Reactivity of 5-aminopyrazoles bearing a cyclopropyl group at C3-position in palladium-catalyzed direct C4-arylation. Catal Commun 115:55–58

    Article  CAS  Google Scholar 

  50. Jedinák LS, Zátopková RT, Zemánková H, Šustková A, Cankař P (2016) The suzuki–Miyaura cross-coupling reaction of halogenated aminopyrazoles: method development, scope, and mechanism of dehalogenation side reaction. J Org Chem 82:157–169

    Article  CAS  PubMed  Google Scholar 

  51. Lee S, Park SB (2009) An efficient one-step synthesis of heterobiaryl pyrazolo [3,4-b] pyridines via indole ring opening. Org Lett 11:5214–5217

    Article  CAS  PubMed  Google Scholar 

  52. Prakash R, Shekarrao K, Saikia P, Gogoi S, Boruah RC (2015) Palladium mediated regioselective intramolecular heck reaction: synthesis of 1,3,4-trisubstituted pyrazolo [3,4-b] pyridines, 3H-pyrazolo [3,4-c] isoquinolines and 3 h-pyrazolo [4, 3-f][1, 7] naphthyridines. RSC Adv 5:21099–21102

    Article  CAS  Google Scholar 

  53. Li J, Zhang J, Yang H, Jiang G (2017) Assembly of diversely substituted quinolines via aerobic oxidative aromatization from simple alcohols and anilines. J Org Chem 82:3284–3290

    Article  CAS  PubMed  Google Scholar 

  54. Koyioni M, Manoli M, Manolis MJ, Koutentis PA (2014) Reinvestigating the reaction of 1H-pyrazol-5-amines with 4, 5-dichloro-1,2,3-dithiazolium chloride: a route to pyrazolo [3,4-c] isothiazoles and pyrazolo [3,4-d] thiazoles. J Org Chem 79:4025–4037

    Article  CAS  PubMed  Google Scholar 

  55. Rizk H, Ibrahim S, El-Borai M (2015) Synthesis, fastness properties, color assessment and antimicrobial activity of some azo reactive dyes having pyrazole moiety. Dyes Pigments 112:86–92

    Article  CAS  Google Scholar 

  56. Rizk H, El-Badawi M, Ibrahim S, El-Borai M (2011) Synthesis of some novel heterocyclic dyes derived from pyrazole derivatives. Arabian J Chem 4:37–44

    Article  CAS  Google Scholar 

  57. Chen J, Liu W, Ma J, Xu H, Wu J, Tang X, Fan Z, Wang P (2012) Synthesis and properties of fluorescence dyes: tetracyclic pyrazolo [3,4-b] pyridine-based coumarin chromophores with intramolecular charge transfer character. J Org Chem 77:3475–3482

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Z-T, Liang Y, Ma Y-Q, Xue D, Yang J-L (2010) One-step synthesis of diarylpyrazolo [3,4-b] pyridines from isoflavones. J Comb Chem 12:600–603

    Article  CAS  PubMed  Google Scholar 

  59. Miliutina M, Janke J, Hassan S, Zaib S, Iqbal J, Lecka J, Sévigny J, Villinger A, Friedrich A, Lochbrunner S (2018) A domino reaction of 3-chlorochromones with aminoheterocycles. Synthesis of pyrazolopyridines and benzofuropyridines and their optical and ecto-5′-nucleotidase inhibitory effects. Org Biomol Chem 16:717–732

    Article  CAS  PubMed  Google Scholar 

  60. Komarov K, Chkanikov N, Galakhov M, Kolomietz A, Fokin A (1990) Reaction of 1, 1-dicyano-2, 2-bis (trifluoromethyl) ethylene with arylamines. J Fluor Chem 47:59–69

    Article  CAS  Google Scholar 

  61. Dubovtsev AY, Dmitriev MV, Silaichev PS, Antonov DI, Maslivets AN (2017) Formal [3 + 3] cyclocondensation of 4-acyl-1H-pyrrole-2, 3-diones with five-membered cyclic enamines to form substituted 1H-pyrazolo [3,4-b] pyridines and isoxazolo [5,4-b] pyridines. Synthesis 49:2223–2230

    Article  CAS  Google Scholar 

  62. Bogza SL, Kobrakov KI, Malienko AA, Perepichka IF, Sujkov SY, Bryce MR, Lyubchik SB, Batsanov AS, Bogdan NM (2005) A versatile synthesis of pyrazolo [3,4-c] isoquinoline derivatives by reaction of 4-aryl-5-aminopyrazoles with aryl/heteroaryl aldehydes: the effect of the heterocycle on the reaction pathways. Org Biomol Chem 3:932–940

    Article  CAS  PubMed  Google Scholar 

  63. Ghaedi A, Bardajee G, Mirshokrayi A, Mahdavi M, Shafiee A, Akbarzadeh T (2015) Facile, novel and efficient synthesis of new pyrazolo [3,4-b] pyridine products from condensation of pyrazole-5-amine derivatives and activated carbonyl groups. RSC Adv 5:89652–89658

    Article  CAS  Google Scholar 

  64. Chebanov VA, Sakhno YI, Desenko SM, Chernenko VN, Musatov VI, Shishkina SV, Shishkin OV, Kappe CO (2007) Cyclocondensation reactions of 5-aminopyrazoles, pyruvic acids and aldehydes. Multicomponent approaches to pyrazolopyridines and related products. Tetrahedron 63:1229–1242

    Article  CAS  Google Scholar 

  65. Shi DQ, Shi JW, Yao H, Jiang H, Wang XS (2007) An efficient synthesis of pyrazolo [3,4-b] pyridine derivatives in aqueous media. J Chin Chem Soc 54:1341–1345

    Article  CAS  Google Scholar 

  66. Quiroga J, Cruz S, Insuasty B, Abonia R, Cobo J, Sanchez A, Nogueras M, Low JN (2001) Synthesis and structural analysis of 5-cyanodihydropyrazolo [3,4-b] pyridines. J Heterocycl Chem 38:53–60

    Article  CAS  Google Scholar 

  67. Nam N, Grandberg I, Sorokin V (2003) Condensation of 1-substituted 5-aminopyrazoles with β-dicarbonyl compounds. Chem Heterocycl Compd 39:937–942

    Article  CAS  Google Scholar 

  68. Iaroshenko VO, Sevenard DV, Kotljarov A, Volochnyuk DM, Tolmachev AO, Sosnovskikh VY (2009) A convenient synthesis of fluorinated pyrazolo [3,4-b] pyridine and pyrazolo [3,4-d] pyrimidine nucleosides. Synthesis 2009:731–740

    Article  CAS  Google Scholar 

  69. Rusinov V, Petrov AY, Chupakhin O (1992) Nitroazines. 20. Simple syntheses of nitropyrazolopyridines from aliphatic nitrosynthons and aminopyrazoles. Chem Heterocycl Compd 28:1335–1339

    Article  Google Scholar 

  70. Pedrosa LF, de Macedo WP, Furtado AC, Guedes GP, Borges JC, Resende JA, Vaz MG, Bernardino AM, de Souza MC (2014) Synthesis and characterization of new 1H-pyrazolo [3,4-b] pyridine phosphoramidate derivatives. Arkivoc 4:38–50

    Google Scholar 

  71. Abdel-Aziz HA, Saleh TS, El-Zahabi HS (2010) Facile synthesis and in vitro antitumor activity of some pyrazolo [3,4-b] pyridines and pyrazolo [1,5-a] pyrimidines linked to a thiazolo [3,2-a] benzimidazole moiety. Arch Pharm 343:24

    CAS  Google Scholar 

  72. Patil SP, Toche RB (2011) Use of sodium salt of cyclic β-formylester for synthesis of dihydro-2H-furo [2,3-d] pyrazolo [3,4-b] pyridines and pyrazolo [3,4-b] pyrrolo [2,3-d] pyridines. Monatsh Chem 142:1193–1201

    Article  CAS  Google Scholar 

  73. Petrov AA, Kasatochkin AN, Selivanov SI (2015) A facile synthesis of regioisomeric 4-amino-and 6-amino-3-arylpyrazolo [3,4-b] pyridine-5-carbonitriles. Mendeleev Commun 25:382–383

    Article  CAS  Google Scholar 

  74. Yue X, Jin H, Liu H, Rosenberg AJ, Klein RS, Tu Z (2015) A potent and selective C-11 labeled pet tracer for imaging sphingosine-1-phosphate receptor 2 in the cns demonstrates sexually dimorphic expression. Org Biomol Chem 13:7928–7939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dorn H, Zubek A (1968) Potentielle cytostatica, XVI. Bicyclische systeme aus acetessigester und 5-amino-1-methyl-, 5-amino-1-benzyl-sowie 3(5)-amino-pyrazol. Eur J Inorg Chem 101:3265–3277

    CAS  Google Scholar 

  76. Petrov A, Kasatochkin A, Emelina E, Haukka M (2012) Regioisomeric 4-amino-and 6-aminopyrazolo [3,4-b] pyridines: synthesis and structure determination by NMR spectroscopy and X-ray diffraction. Russ Chem Bull 61:891–896

    Article  CAS  Google Scholar 

  77. Medeiros AC, Borges JC, Becker KM, Rodrigues RF, Leon LL, Canto-Cavalheiro M, Bernardino AM, de Souzaa MC, Pedrosa LF (2018) Synthesis of new conjugates 1H-pyrazolo [3,4-b] pyridine-phosphoramidate and evaluation against Leishmania amazonensis. J Braz Chem Soc 29:159–167

    Article  CAS  Google Scholar 

  78. Saikia P, Gogoi S, Boruah RC (2015) Carbon–carbon bond cleavage reaction: synthesis of multisubstituted pyrazolo [1,5-a] pyrimidines. J Org Chem 80:6885–6889

    Article  CAS  PubMed  Google Scholar 

  79. Grosse S, Pillard C, Massip S, Léger JM, Jarry C, Bourg S, Bernard P, Guillaumet G (2012) Efficient synthesis and first regioselective C-3 direct arylation of imidazo [1,2-b] pyrazoles. Chem Eur J 18:14943–14947

    Article  CAS  PubMed  Google Scholar 

  80. Golubev P, Karpova EA, Pankova AS, Sorokina M, Kuznetsov MA (2016) Regioselective synthesis of 7-(trimethylsilylethynyl) pyrazolo [1,5-a] pyrimidines via reaction of pyrazolamines with enynones. J Org Chem 81:11268–11275

    Article  CAS  PubMed  Google Scholar 

  81. Schmitt DC, Niljianskul N, Sach NW, Trujillo JI (2018) A parallel approach to 7-(hetero) arylpyrazolo [1,5-a] pyrimidin-5-ones. ACS Comb Sci 20:256–260

    Article  CAS  PubMed  Google Scholar 

  82. Foley C, Shaw A, Hulme C (2017) Oxidative deaminations and deisatinylations of Ugi-Azide and Ugi-3CR products: a two-step MCR-oxidation protocol toward functionalized α-ketoamides and α-ketotetrazoles. Org Lett 19:2238–2241

    Article  CAS  PubMed  Google Scholar 

  83. Quiroga J, Portilla J, Abonía R, Insuasty B, Nogueras M, Cobo J (2008) Regioselective synthesis of novel substituted pyrazolo [1,5-a] pyrimidines under solvent-free conditions. Tetrahedron Lett 49:6254–6256

    Article  CAS  Google Scholar 

  84. Hassaneen HM, Abdallah TA, Abdelhadi HA, Hassaneen HM, Pagni RM (2003) Polyfunctional fused heterocyclic compounds via indene-1, 3-diones. Heteroat Chem 14:491–497

    Article  CAS  Google Scholar 

  85. Kim I, Song JH, Park CM, Jeong JW, Kim HR, Ha JR, No Z, Hyun Y-L, Cho YS, Kang NS (2010) Design, synthesis, and evaluation of 2-aryl-7-(3′, 4′-dialkoxyphenyl)-pyrazolo [1,5-a] pyrimidines as novel pde-4 inhibitors. Bioorg Med Chem Lett 20:922–926

    Article  CAS  PubMed  Google Scholar 

  86. Mokhtar M, Saleh TS, Basahel SN (2012) Mg–Al hydrotalcites as efficient catalysts for aza-Michael addition reaction: a green protocol. J Mol Catal Chem 353:122–131

    Article  CAS  Google Scholar 

  87. Al-Shiekh MA, El-Din AMS, Hafez EA, Elnagdi MH (2004) α-enones in heterocyclic synthesis, Part I. Classical synthetic and environmentally friendly synthetic approaches to alkyl and acyl azoles and azines. J Chem Res 2004:174–179

    Article  Google Scholar 

  88. Thomas A, Chakraborty M, Ila H, Junjappa H (1990) Cyclocondensation of oxoketene dithioacetals with 3-aminopyrazoles: a facile highly regioselective general route to substituted and fused pyrazolo a] pyrimidines. Tetrahedron 46:577–586

    Article  CAS  Google Scholar 

  89. Elgemeie GE, Fathy NM, Faddah LM, Ebeid MY, Elsaid MK (1991) Reactions with 3, 5-diaminopyrazoles: new routes to pyrazolo [1,5-α] pyrimidines. Arch Pharm 324:149–152

    Article  CAS  Google Scholar 

  90. Rádl S, Blahovcová M, Plaček L, Pekárek T, Havlíček J (2010) Synthesis of some impurities and/or degradation products of zaleplon. J Heterocycl Chem 47:276–283

    Google Scholar 

  91. Shidlovskii A, Peregudov A, Averkiev B, Antipin MY, Chkanikov N (2004) Heterocyclization of 2-chloro-1-cyano-1-diethoxyphosphoryl-2-trifluoromethylethylene and 2-chloro-2-chlorodifluoromethyl-1-cyano-1-diethoxyphosphorylethylene. Russ Chem Bull 53:2060–2070

    Article  CAS  Google Scholar 

  92. Quiroga J, Portilla J, Abonía R, Insuasty B, Nogueras M, Cobo J (2008) Synthesis of novel 5-amino-1-aroylpyrazoles. Tetrahedron Lett 49:5943–5945

    Article  CAS  Google Scholar 

  93. Hassan AS, Mady MF, Awad HM, Hafez TS (2017) Synthesis and antitumor activity of some new pyrazolo [1,5-a] pyrimidines. Chin Chem Lett 28:388–393

    Article  CAS  Google Scholar 

  94. Al-Adiwish WM, Tahir M, Siti-Noor-Adnalizawati A, Hashim SF, Ibrahim N, Yaacob W (2013) Synthesis, antibacterial activity and cytotoxicity of new fused pyrazolo [1,5-a] pyrimidine and pyrazolo [5,1-c][1,2,4] triazine derivatives from new 5-aminopyrazoles. Eur J Med Chem 64:464–476

    Article  CAS  PubMed  Google Scholar 

  95. Darweesh AF, Mekky AE, Salman AA, Farag AM (2016) Efficient, microwave-mediated synthesis of benzothiazole-and benzimidazole-based heterocycles. Res Chem Int 42:4341–4358

    Article  CAS  Google Scholar 

  96. Nagahara K, Kawano H, Sasaoka S, Ukawa C, Hirama T, Takada A, Cottam HB, Robins RK (1994) Reaction of 5-aminopyrazole derivatives with ethoxymethylene-malononitrile and its analogues. J Heterocycl Chem 31:239–243

    Article  CAS  Google Scholar 

  97. Farag AM, Dawood KM, Elmenoufy HA (2004) A convenient route to pyridones, pyrazolo [2,3-a] pyrimidines and pyrazolo [5,1-c] triazines incorporating antipyrine moiety. Heteroat Chem 15:508–514

    Article  CAS  Google Scholar 

  98. Emelina E, Petrov A, Firsov A (2007) Α-aminoazoles in syntheses of heterocycles. 3(5)-aminopyrazole-4-carbonitriles in the synthesis of pyrazolo [1,5-α] pyrimidines. Russ J Org Chem 43:471–473

    Article  CAS  Google Scholar 

  99. El-Borai MA, Rizk HF, Beltagy DM, El-Deeb IY (2013) Microwave-assisted synthesis of some new pyrazolopyridines and their antioxidant, antitumor and antimicrobial activities. Eur J Med Chem 66:415–422

    Article  CAS  PubMed  Google Scholar 

  100. Gamal-Eldeen AM, Hamdy NA, Abdel-Aziz HA, El-Hussieny EA, Fakhr IM (2014) Induction of intrinsic apoptosis pathway in colon cancer HCT-116 cells by novel 2-substituted-5, 6, 7, 8-tetrahydronaphthalene derivatives. Eur J Med Chem 77:323–333

    Article  CAS  PubMed  Google Scholar 

  101. Elmaati TMA, El-Taweel F (2003) Routes to pyrazolo [3,4-e][1, 4] thiazepine, pyrazolo [1,5-a] pyrimidine and pyrazole derivatives. J Chin Chem Soc 50:413–418

    Article  CAS  Google Scholar 

  102. Ali KA, Hosni HM, Ragab EA, El-Moez SIA (2012) Synthesis and antimicrobial evaluation of some new cyclooctanones and cyclooctane-based heterocycles. Arch Pharm 345:231–239

    Article  CAS  Google Scholar 

  103. Stepaniuk OO, Matvienko VO, Kondratov IS, Shishkin OV, Volochnyuk DM, Mykhailiuk PK, Tolmachev AA (2012) Regioselective reactions of ethyl (4, 5-dihydrofuran-3-yl)-2-oxoacetate and ethyl 2-(3,4-dihydro-2h-pyran-6-yl)-2-oxoacetate with 1-unsubstituted aminoazoles. Synthesis 44:895–902

    Article  CAS  Google Scholar 

  104. Raslan MA, Omran OA (2015) Synthesis and reactivity of enaminones: synthesis of some 1,3,4-thiadiazole linked to pyrazole, pyridine, benzimidazolopyrimidine, pyrazolopyrimidine, pyrazolotriazine and triazolotriazine derivatives. J Heterocycl Chem 53:1121–1123

    Article  CAS  Google Scholar 

  105. Dawood KM (2005) Synthesis of spiro-pyrazole-3, 3′-thiopyrano [2,3-b] pyridines and azolo[a] pyrido [2′, 3′: 5, 6] thiopyrano [3,4-d] pyrimidines as new ring systems with antifungal and antibacterial activities. J Heterocycl Chem 42:221–225

    Article  CAS  Google Scholar 

  106. Reddy GJ, Latha D, Pallavi K, Khalilullah M (2003) Synthesis of pyrazolo [1,5-a] pyrimido [4,3-d] benzopyans and 2-pyrazolo [1,5-a] pyrimidinyl phenols from the reaction of 5(3)-amino pyrazoles. Heterocycl Commun 9:453–456

    CAS  Google Scholar 

  107. Ammar YA, Aly MM, Al-Sehemi AAG, Salem MA, El-Gaby MS (2009) Cyanoacetanilides intermediates in heterocyclic synthesis. Part 5: preparation of hitherto unknown 5-aminopyrazole and pyrazolo [1,5-a] pyrimidine derivatives containing sulfamoyl moiety. J Chin Chem Soc 56:1064–1071

    Article  CAS  Google Scholar 

  108. Wendt MD, Kunzer A, Henry RF, Cross J, Pagano TG (2007) Regiochemistry of addition of aminoheterocycles to α-cyanocinnamonitriles: formation of aza-bridged bi-and tricycles. Tetrahedron Lett 48:6360–6363

    Article  CAS  Google Scholar 

  109. Quiroga J, Portilla J, Abonía R, Insuasty B, Nogueras M, Cobo J (2007) Regioselective synthesis of novel polyfunctionally substituted pyrazolo [1,5-a] pyrimidines under solvent-free conditions. Tetrahedron Lett 48:6352–6355

    Article  CAS  Google Scholar 

  110. Quiroga J, Mejía D, Insuasty B, Abonia R, Nogueras M, Sanchez A, Cobo J, Low J (2002) Synthesis of 6-(2-hydroxybenzoyl) pyrazolo [1,5-a] pyrimidines by reaction of 5-amino-1H-pyrazoles and 3-formylchromone. J Heterocycl Chem 39:51–54

    Article  CAS  Google Scholar 

  111. Al-Mousawi SM, Mohammad MA, Elnagdi MH (2001) Synthesis of new pyrazolo [1,5-a] pyrimidines and pyrazolo [3,4-b] pyridines. J Heterocycl Chem 38:989–991

    Article  CAS  Google Scholar 

  112. Daniels RN, Kim K, Lebois EP, Muchalski H, Hughes M, Lindsley CW (2008) Microwave-assisted protocols for the expedited synthesis of pyrazolo [1,5-a] and [3,4-d] pyrimidines. Tetrahedron Lett 49:305–310

    Article  CAS  Google Scholar 

  113. Petrov A, Kasatochkin A, Emelina E (2012) Study of regioselectivity of reactions between 3(5)-aminopyrazoles and 2-acetylcycloalkanones. Russ J Org Chem 48:1111–1120

    Article  CAS  Google Scholar 

  114. Britsun V, Esipenko A, Chernega A, Rusanov E, Lozinskii M (2007) Synthesis and reactions of 1-R-3-benzoyl-5-ethoxycarbonyl-6-oxo-1,2,3,6-tetrahydropyridine-2-thiones. Chem Heterocycl Compd 43:1411–1419

    Article  CAS  Google Scholar 

  115. Clarke D, Mares RW, McNab H (1997) Preparation and pyrolysis of 1-(pyrazol-5-yl)-1,2,3-triazoles and related compounds1. J Chem Soc Perkin Trans 1:1799–1804

    Article  Google Scholar 

  116. Shekarrao K, Kaishap PP, Gogoi S, Gogoi S, Boruah RC (2014) A facile synthesis of steroidal D-ring fused pyrazolo [1,5-a] pyrimidines. Tetrahedron Lett 55:5251–5255

    Article  CAS  Google Scholar 

  117. Solomyannii R, Pil’o S, Slivchuk S, Prokopenko V, Rusanov E, Brovarets V (2017) Synthesis of 5-methylsulfonylpyrimidines and their fused derivatives. Russ J Gen Chem 87:407–413

    Article  CAS  Google Scholar 

  118. Khalil MA, Raslan MA, Sayed SM (2017) Synthesis and reactivity of 3-oxoprop-1-en-1-olate derivative as a building block for the synthesis of azole and azine derivatives. J Heterocycl Chem 54:1845–1853

    Article  CAS  Google Scholar 

  119. Hassan AS, Moustafa GO, Awad HM (2017) Synthesis and in vitro anticancer activity of pyrazolo [1,5-a] pyrimidines and pyrazolo [3,4-d][1–3] triazines. Synth Commun 47:1963–1972

    Article  CAS  Google Scholar 

  120. Ahmed N, Badahdah K, Qassar H (2017) Novel quinoline bearing sulfonamide derivatives and their cytotoxic activity against MCF7 cell line. Med Chem Res 26:1201–1212

    Article  CAS  Google Scholar 

  121. Deng X-Q, Quan L-N, Song M-X, Wei C-X, Quan Z-S (2011) Synthesis and anticonvulsant activity of 7-phenyl-6, 7-dihydro-[1,2,4] triazolo [1,5-a] pyrimidin-5 (4H)-ones and their derivatives. Eur J Med Chem 46:2955–2963

    Article  CAS  PubMed  Google Scholar 

  122. Quiroga J, Insuasty B, Hormaza A, Gamenara D, Dominguez L, Saldana J (1999) Synthesis, characterization and in vitro anthelmintic activity against Nippostrongylus brasiliensis of new 5-aryl-2-phenyl-6,7-dihydropyrazolo [1,5-a] pyrimidines. J Heterocycl Chem 36:11–13

    Article  CAS  Google Scholar 

  123. Golubev AS, Pasternak PV, Shidlovskii AF, Savelèva LN, Averkiev BB, Nesterov VN, Antipin MY, Peregudov AS, Chkanikov ND (2002) Synthesis and some heterocyclisation reactions of CF2H-and CF2Cl-substituted 1, 1-dicyanoethylenes. J Fluor Chem 114:63–74

    Article  CAS  Google Scholar 

  124. Pasternak PV, Averkiev BB, Antipin MY, Peregudov AS, Chkanikov ND (2004) Synthesis and some heterocyclization reactions of new diethyl (1, 1-difluoro-3, 3-dicyano-2-trifluoromethylallyl) phosphonate and ethyl 3, 3-dicyano-2-[(diethoxyphosphoryl) difluoromethyl] acrylate. J Fluor Chem 125:1853–1868

    Article  CAS  Google Scholar 

  125. Pryadeina M, Burgart YV, Saloutin V, Slepukhin P, Sadchikova E, Ulomskii E (2009) Synthesis of derivatives of pyrazolo [1,5-a] pyrimidines and imidazo [1,5-a] pyrimidines proceeding from alkyl 2-benzylidene-3-oxo-3-fluoroalkylpropionates. Russ J Org Chem 45:242–247

    Article  CAS  Google Scholar 

  126. Elgemeie GEH, Riad BY, Nawwar GA, Elgamal S (1987) Nitriles in heterocyclic synthesis: synthesis of new pyrazolo [1,5-a] pyrimidines, pyrano [2,3-c] pyrazoles and pyrano [3,4-c] pyrazoles. Arch Pharm 320:223–228

    Article  CAS  Google Scholar 

  127. Norman RE, Perkins MV, Liepa AJ, Francis CL (2013) N, N-dialkyl-N′-chlorosulfonyl chloroformamidines in heterocyclic synthesis. Part X. Aust J Chem 66:1323–1333

    Article  CAS  Google Scholar 

  128. Bekircan O, Küxük M, Kahveci B, Kolaylı S (2005) Convenient synthesis of fused heterocyclic 1, 3, 5-triazines from some n-acyl imidates and heterocyclic amines as anticancer and antioxidant agents. Arch Pharm 338:365–372

    Article  CAS  Google Scholar 

  129. Kolos N, Kibkalo B, Zamigaylo L, Omel I, Shishkin O (2015) One-pot synthesis of imidazo [1,2-b] pyrazole derivatives. Russ Chem Bull 64:864–871

    Article  CAS  Google Scholar 

  130. Orlov V, Sidorenko DY (2012) Carbo [3 + 3] cyclocondensation reactions. A new method for the synthesis of tetrahydropyrazolo [1,5-b] quinazolines and tetrahydropyrazolo [4,5-b] quinolines. Chem Heterocycl Compd 48:650–657

    Article  CAS  Google Scholar 

  131. Abbas IM, Abdallah MA, Gomha SM, Kazem MS (2017) Synthesis and antimicrobial activity of novel azolopyrimidines and pyrido-triazolo-pyrimidinones incorporating pyrazole moiety. J Heterocycl Chem 54:3447–3457

    Article  CAS  Google Scholar 

  132. Chimichi S, Cosimelli B, Bruni F, Selleri S (1992) Unambiguous structure determination of some pyrazolo [1,5-a] pyrimidine derivatives by multinuclear NMR spectroscopy. Magn Reson Chem 30:1117–1121

    Article  CAS  Google Scholar 

  133. Emelina E, Petrov A, Firsov A (2001) Aminoazoles in heterocycles synthesis: II. Trifluoromethyl-containing diketones in the synthesis of pyrazolo [1,5-a] pyrimidines. Russ J Org Chem 37:852–858

    Article  CAS  Google Scholar 

  134. Portilla J, Quiroga J, Nogueras M, Cobo J (2012) Regioselective synthesis of fused pyrazolo [1,5-a] pyrimidines by reaction of 5-amino-1H-pyrazoles and β-dicarbonyl compounds containing five-membered rings. Tetrahedron 68:988–994

    Article  CAS  Google Scholar 

  135. Hussein AM (2012) Novel synthesis of some new pyrimido [1,6-a] pyrimidine and pyrazolo [1,5-a] pyrimidine derivatives. J Heterocycl Chem 49:446–451

    Article  CAS  Google Scholar 

  136. Elgemeie GH, Metwally NH (2000) Synthesis of structurally related purines: benzimidazo [1,2-a] pyridines, benzimidazo-[1,2-c] pyrimidines, and pyrazolo-[1,5-a] pyrimidines. Monatsh Chem 131:779–785

    Article  CAS  Google Scholar 

  137. Mohamed MA (2010) Synthesis of some new pyridones, fused pyrimidines, and fused 1,2,4-triazines. J Heterocycl Chem 47:517–523

    CAS  Google Scholar 

  138. Abdelhamid AO, El-Idreesy TT, Abdelriheem NA, Dawoud HR (2015) Green one-pot solvent-free synthesis of pyrazolo [1,5-a] pyrimidines, azolo [3,4-d] pyridiazines, and thieno [2,3-b] pyridines containing triazole moiety. J Heterocycl Chem 53:710–718

    Article  CAS  Google Scholar 

  139. Abdelhamid AO, Baghos VB, Halim M (2007) Synthesis and reactivity of N-[3-amino-4-(benzoxazol-2-yl) pyrazol-5-yl] phenylamine. J Chem Res 2007:420–425

    Article  Google Scholar 

  140. Ahmed SA, Hussein AM, Hozayen WG, El-Ghandour AH, Abdelhamid AO (2007) Synthesis of some pyrazolopyrimidines as purine analogues. J Heterocycl Chem 44:803–810

    Article  CAS  Google Scholar 

  141. Cankař P, Maloň M, Gucký T, Slouka J (2011) Cyclisation reactions of hydrazones XXXII. Synthesis of some pyrazolylhydrazones and study of their cyclisation. Monatsh Chem 142:1149

    Article  CAS  Google Scholar 

  142. Ghozlan SA, Abdelrazek FM, Mohamed MH, Azmy KE (2010) Synthesis of some new pyrazole and pyrazolopyrimidine derivatives. J Heterocycl Chem 47:1379–1385

    Article  CAS  Google Scholar 

  143. Castillo J-C, Estupiñan D, Nogueras M, Cobo J, Portilla J (2016) 6-(aryldiazenyl) pyrazolo [1,5-a] pyrimidines as strategic intermediates for the synthesis of pyrazolo [5,1-b] purines. J Org Chem 81:12364–12373

    Article  CAS  PubMed  Google Scholar 

  144. Gnanasekaran KK, Muddala NP, Bunce RA (2015) Pyrazoloquinazolinones and pyrazolopyridopyrimidinones by a sequential N-acylation–SNAr reaction. Tetrahedron Lett 56:1367–1369

    Article  CAS  Google Scholar 

  145. Bera H, Kumar Ojha P, Tan BJ, Sun L, Dolzhenko AV, Chui W-K, Chiu GNC (2014) Discovery of mixed type thymidine phosphorylase inhibitors endowed with antiangiogenic properties: synthesis, pharmacological evaluation and molecular docking study of 2-thioxo-pyrazolo [1,5-a][1, 3, 5] triazin-4-ones. Part II. Eur J Med Chem 78:294–303

    Article  CAS  PubMed  Google Scholar 

  146. Saito T, Obitsu T, Minamoto C, Sugiura T, Matsumura N, Ueno S, Kishi A, Katsumata S, Nakai H, Toda M (2011) Pyrazolo [1,5-a] pyrimidines, triazolo [1,5-a] pyrimidines and their tricyclic derivatives as corticotropin-releasing factor 1 (CRF1) receptor antagonists. Bioorgan Med Chem 19:5955–5966

    Article  CAS  Google Scholar 

  147. Wong FF, Huang Y-Y, Chang C-H (2012) Evaluation of electrophilic heteroaromatic substitution: synthesis of heteroaromatic-fused pyrimidine derivatives via sequential three-component heterocyclization. J Org Chem 77:8492–8500

    Article  CAS  PubMed  Google Scholar 

  148. Chang C-H, Tsai HJ, Huang Y-Y, Lin H-Y, Wang L-Y, Wu T-S, Wong FF (2013) Selective synthesis of pyrazolo [3,4-d] pyrimidine, N-(1H-pyrazol-5-yl) formamide, or N-(1H-pyrazol-5-yl) formamidine derivatives from N-1-substituted-5-aminopyrazoles with new Vilsmeier-type reagents. Tetrahedron 69:1378–1386

    Article  CAS  Google Scholar 

  149. Aggarwal R, Rani C, Kumar R, Garg G, Sharma J (2014) Synthesis of new bi (pyrazolo [1,5-a] pyrimidinyl)-7-one derivatives from dehydroacetic acid and its analogues as antibacterial agents. Arkivoc 2:120–134

    Google Scholar 

  150. Singh SB, Tiwari K, Verma PK, Srivastava M, Tiwari KP, Singh J (2013) A new eco-friendly strategy for the synthesis of novel antimicrobial spiro-oxindole derivatives via supramolecular catalysis. Supramol Chem 25:255–262

    Article  CAS  Google Scholar 

  151. Rahmati A, Kenarkoohi T, Khavasi HR (2012) Synthesis of 2, 6′-dioxo-1′, 5′, 6′, 7′-tetrahydrospiro [indoline-3,4′-pyrazolo [3,4-b] pyridine]-5′-carbonitriles via a one-pot, three-component reaction in water. ACS Comb Sci 14:657–664

    Article  CAS  PubMed  Google Scholar 

  152. Eldehna WM, EL-Naggar DH, Hamed AR, Ibrahim HS, Ghabbour HA, Abdel-Aziz HA (2018) One-pot three-component synthesis of novel spirooxindoles with potential cytotoxic activity against triple-negative breast cancer MDA-MB-231 cells. J Enzyme Inhib Med Chem 33:309–318

    Article  CAS  PubMed  Google Scholar 

  153. Ahadi S, Ghahremanzadeh R, Mirzaei P, Bazgir A (2009) Synthesis of spiro [benzopyrazolonaphthyridine-indoline]-diones and spiro [chromenopyrazolopyridine-indoline]-diones by one-pot, three-component methods in water. Tetrahedron 65:9316–9321

    Article  CAS  Google Scholar 

  154. Ryabukhin SV, Granat DS, Plaskon AS, Shivanyuk A, Lukin O (2014) Synthesis of pyrazolo [3,4-d]-4, 5-dihydropyrimidin-6-ones. Tetrahedron Lett 55:1846–1847

    Article  CAS  Google Scholar 

  155. Shirvan SA, Ghahremanzadeh R, Moghaddam MM, Bazgir A, Zarnani AH, Akhondi MM (2012) A novel method for the synthesis of spiro [indoline-pyrazolo [4′, 3′: 5, 6] pyrido [2,3-d] pyrimidine] triones by alum as a reusable catalyst. J Heterocycl Chem 49:951–954

    Article  CAS  Google Scholar 

  156. Chen H, Shi D (2010) Efficient one-pot synthesis of novel spirooxindole derivatives via three-component reaction in aqueous medium. J Comb Chem 12:571–576

    Article  CAS  PubMed  Google Scholar 

  157. Nikpassand M, Zare Fekri L, Jamshidi N (2015) Microwave-assisted catalyst free three component synthesis of mono and bis spiro pyrazolopyridines in solvent free reaction. J Heterocycl Chem 52:1580–1583

    Article  CAS  Google Scholar 

  158. Liang Y-R, Hu Y-J, Zhou X-H, Wu Q, Lin X-F (2017) One-pot construction of spirooxindole backbone via biocatalytic domino reaction. Tetrahedron Lett 58:2923–2926

    Article  CAS  Google Scholar 

  159. Ghahremanzadeh R, Rashid Z, Zarnani A-H, Naeimi H (2014) Inorganic–organic hybrid silica based tin complex as a novel, highly efficient and recyclable heterogeneous catalyst for the one-pot preparation of spirooxindoles in water. Dalton Trans 43:15791–15797

    Article  CAS  PubMed  Google Scholar 

  160. Quiroga J, Portillo S, Pérez A, Gálvez J, Abonia R, Insuasty B (2011) An efficient synthesis of pyrazolo [3,4-b] pyridine-4-spiroindolinones by a three-component reaction of 5-aminopyrazoles, isatin, and cyclic β-diketones. Tetrahedron Lett 52:2664–2666

    Article  CAS  Google Scholar 

  161. Dabiri M, Noroozi Tisseh Z, Nobahar M, Bazgir A (2011) Organic reaction in water: a highly efficient and environmentally friendly synthesis of spiro compounds catalyzed by L-proline. Helv Chim Acta 94:824–830

    Article  CAS  Google Scholar 

  162. Dabiri M, Tisseh ZN, Bazgir A (2012) An efficient synthesis of fluorescent spiro [benzopyrazoloquinoline-indoline] triones and spiro [acenaphthylenebenzopyrazoloquinoline] triones. Monatsh Chem 143:139–143

    Article  CAS  Google Scholar 

  163. Dabiri M, Tisseh ZN, Bahramnejad M, Bazgir A (2011) Sonochemical multi-component synthesis of spirooxindoles. Ultrason Sonochem 18:1153–1159

    Article  CAS  PubMed  Google Scholar 

  164. Feng BB, Jin RZ, Zhang MM, Wang XS (2015) Green synthesis of spiro [indoline-3,4′-pyrazolo [3,4-b][1, 6] naphthyridine]-2, 5′(1′H)-diones catalyzed by TsOH in ionic liquids. J Heterocycl Chem 53:1578–1583

    Article  CAS  Google Scholar 

  165. Lichitsky B, Komogortsev A, Dudinov A, Krayushkin M (2009) Three-component condensation of 5-aminopyrazole derivatives with isatins and Meldrum’s acid. Synthesis of 1, 7-dihydrospiro [pyrazolo [3,4-b]-pyridine-4, 3′-indole]-2′, 6 (1′H, 5H)-diones. Russ Chem Bull 58:1504–1508

    Article  CAS  Google Scholar 

  166. Fan L, Yao C, Wei X (2016) FeCl3-catalyzed multicomponent synthesis of 8-alkoxycarbonylnaphthyl-functionalized pyrazolo [3,4-b] pyridines involving C–C bond cleavage. Monatsh Chem 147:1597–1603

    Article  CAS  Google Scholar 

  167. Chebanov VA, Saraev VE, Desenko SM, Chernenko VN, Shishkina SV, Shishkin OV, Kobzar KM, Kappe CO (2007) One-pot, multicomponent route to pyrazoloquinolizinones. Org Lett 9:1691–1694

    Article  CAS  PubMed  Google Scholar 

  168. Chebanov VA, Saraev VE, Desenko SM, Chernenko VN, Knyazeva IV, Groth U, Glasnov TN, Kappe CO (2008) Tuning of chemo-and regioselectivities in multicomponent condensations of 5-aminopyrazoles, dimedone, and aldehydes. J Org Chem 73:5110–5118

    Article  CAS  PubMed  Google Scholar 

  169. Zemlyanaya N, Borodina V, Musatov V, Shishkina S, Sofronov D, Lipson V (2017) Cyclocondensations of 3-alkylpyrazol-5-amines with 3-arylprop-2-enals and cyclic 1, 3-diketones. Russ J Org Chem 53:582–591

    Article  CAS  Google Scholar 

  170. Sakhno YI, Shishkina SV, Shishkin OV, Musatov VI, Vashchenko EV, Desenko SM, Chebanov VA (2010) Diversity oriented heterocyclizations of pyruvic acids, aldehydes and 5-amino-N-aryl-1H-pyrazole-4-carboxamides: catalytic and temperature control of chemoselectivity. Mol Divers 14:523–531

    Article  CAS  PubMed  Google Scholar 

  171. Jiang B, Fan W, Sun M-Y, Ye Q, Wang S-L, Tu S-J, Li G (2014) Domino reaction of arylglyoxals with pyrazol-5-amines: selective access to pyrazolo-fused 1, 7-naphthyridines, 1, 3-diazocanes, and pyrroles. J Org Chem 79:5258–5268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Fan W, Ye Q, Xu H-W, Jiang B, Wang S-L, Tu S-J (2013) Novel double [3 + 2 + 1] heteroannulation for forming unprecedented dipyrazolo-fused 2, 6-naphthyridines. Org Lett 15:2258–2261

    Article  CAS  PubMed  Google Scholar 

  173. Wang J-J, Feng X, Xun Z, Shi D-Q, Huang Z-B (2015) Multicomponent strategy to pyrazolo [3,4-e] indolizine derivatives under microwave irradiation. J Org Chem 80:8435–8442

    Article  CAS  PubMed  Google Scholar 

  174. Petrova O, Lipson V, Zamigailo L, Shirobokova M, Musatov V, Baumer V, Sofronov D (2015) Synthesis and chemical properties of 4-aroyl-3-methyl-4, 10-dihydroindeno [1,2-b] pyrazolo-[4,3-e] pyridin-5-ones. Russ J Org Chem 51:1597–1605

    Article  CAS  Google Scholar 

  175. Arlan FM, Khalafy J, Maleki R (2018) One-pot three-component synthesis of a series of 4-aroyl-1, 6-diaryl-3-methyl-1H-pyrazolo [3,4-b] pyridine-5-carbonitriles in the presence of aluminum oxide as a nanocatalyst. Chem Heterocycl Compd 54:51–57

    Article  CAS  Google Scholar 

  176. Tu X-J, Hao W-J, Ye Q, Wang S-S, Jiang B, Li G, Tu S-J (2014) Four-component bicyclization approaches to skeletally diverse pyrazolo [3,4-b] pyridine derivatives. J Org Chem 79:11110–11118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Petrova O, Zamigailo L, Shirobokova M, Shishkina S, Shishkin O, Musatov V, Lipson V (2013) Cyclocondensation of 3(5)-aminopyrazoles with arylglyoxals and cyclohexane-1, 3-diones. Chem Heterocycl Compd 49:955–967

    Article  CAS  Google Scholar 

  178. Hill MD (2016) A multicomponent approach to highly substituted 1H-pyrazolo [3,4-b] pyridines. Synthesis 48:2201–2204

    Article  CAS  Google Scholar 

  179. Huang Z, Hu Y, Zhou Y, Shi D (2010) Efficient one-pot three-component synthesis of fused pyridine derivatives in ionic liquid. ACS Comb Sci 13:45–49

    Article  CAS  PubMed  Google Scholar 

  180. Safaei S, Mohammadpoor-Baltork I, Khosropour AR, Moghadam M, Tangestaninejad S, Mirkhani V, Khavasi HR (2013) One-pot three-component synthesis of pyrano [3, 2-b] pyrazolo [4, 3-e] pyridin-8 (1H)-ones. ACS Comb Sci 15:141–146

    Article  CAS  PubMed  Google Scholar 

  181. Shaabani A, Seyyedhamzeh M, Maleki A, Behnam M, Rezazadeh F (2009) Synthesis of fully substituted pyrazolo [3,4-b] pyridine-5-carboxamide derivatives via a one-pot four-component reaction. Tetrahedron Lett 50:2911–2913

    Article  CAS  Google Scholar 

  182. Nikpassand M, Zare L, Shafaati T, Shariati S (2012) Regioselective synthesis of fused azo-linked pyrazolo [4, 3-e] pyridines using nano-Fe3O4. Chin J Chem 30:604–608

    Article  CAS  Google Scholar 

  183. Svetlik J, Veizerová L, Mayer TU, Catarinella M (2010) Monastrol analogs: a synthesis of pyrazolopyridine, benzopyranopyrazolopyridine, and oxygen-bridged azolopyrimidine derivatives and their biological screening. Bioorgan Med Chem Lett 20:4073–4076

    Article  CAS  Google Scholar 

  184. Magedov IV, Frolova L, Manpadi M, Bhoga UD, Tang H, Evdokimov NM, George O, Hadje Georgiou K, Renner S, Getlik MU (2011) Anticancer properties of an important drug lead podophyllotoxin can be efficiently mimicked by diverse heterocyclic scaffolds accessible via one-step synthesis. J Med Chem 54:4234–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Shi DQ, Yang F, Ni SN (2009) A facile synthesis of furo [3,4-e] pyrazolo [3,4-b] pyridine-5 (7H)-one derivatives via three-component reaction in ionic liquid without any catalyst. J Heterocycl Chem 46:469–476

    Article  CAS  Google Scholar 

  186. Hatti I, Sreenivasulu R, Jadav SS, Jayaprakash V, Kumar CG, Raju RR (2015) Synthesis, cytotoxic activity and docking studies of new 4-aza-podophyllotoxin derivatives. Med Chem Res 24:3305–3313

    Article  CAS  Google Scholar 

  187. Quiroga J, Mejı́a D, Insuasty B, Abonı́a R, Nogueras M, Sánchez A, Cobo J, Low JN (2001) Regioselective synthesis of 4, 7, 8, 9-tetrahydro-2H-pyrazolo [3,4-b] quinolin-5 (6H)-ones. Mech Struct Anal Tetrahedron 57:6947–6953

    CAS  Google Scholar 

  188. Lipson V, Svetlichnaya N, Borodina V, Shirobokova M, Shishkina S, Shishkin O, Musatov V (2010) Cascade cyclization of 3(5)-aminopyrazoles with aromatic aldehydes and cyclohexanediones. Russ J Org Chem 46:1388–1398

    Article  CAS  Google Scholar 

  189. Muravyova EA, Desenko SM, Rudenko RV, Shishkina SV, Shishkin OV, Sen’ko YV, Vashchenko EV, Chebanov VA (2011) Switchable selectivity in multicomponent heterocyclizations of acetoacetamides, aldehydes, and 3-amino-1,2,4-triazoles/5-aminopyrazoles. Tetrahedron 67:9389–9400

    Article  CAS  Google Scholar 

  190. Andriushchenko AY, Desenko SM, Chernenko VN, Chebanov VA (2011) Green and efficient synthesis of pyrazolo [3,4-b] quinolin-5-ones derivatives by microwave-assisted multicomponent reaction in hot water medium. J Heterocycl Chem 48:365–367

    Article  CAS  Google Scholar 

  191. Khurana JM, Chaudhary A, Nand B, Lumb A (2012) Aqua mediated indium (III) chloride catalyzed synthesis of fused pyrimidines and pyrazoles. Tetrahedron Lett 53:3018–3022

    Article  CAS  Google Scholar 

  192. Chebanov V, Desenko S (2012) Multicomponent heterocyclization reactions with controlled selectivity (review). Chem Heterocycl Compd 48:566–583

    Article  CAS  Google Scholar 

  193. Bazgir A, Khanaposhtani MM, Soorki AA (2008) One-pot synthesis and antibacterial activities of pyrazolo [4′, 3′: 5, 6] pyrido [2,3-d] pyrimidine-dione derivatives. Bioorgan Med Chem Lett 18:5800–5803

    Article  CAS  Google Scholar 

  194. Chebanov VA, Sakhno YI, Desenko SM (2012) High regioselective ultrasonic-assisted synthesis of 2, 7-diaryl-4, 7-dihydropyrazolo [1,5-a] pyrimidine-5-carboxylic acids. Ultrason Sonochem 19:707–709

    Article  CAS  PubMed  Google Scholar 

  195. Mosslemin MH, Nateghi MR (2010) Rapid and efficient synthesis of fused heterocyclic pyrimidines under ultrasonic irradiation. Ultrason Sonochem 17:162–167

    Article  CAS  PubMed  Google Scholar 

  196. Bremner WS, Organ MG (2007) Multicomponent reactions to form heterocycles by microwave-assisted continuous flow organic synthesis. J Comb Chem 9:14–16

    Article  CAS  PubMed  Google Scholar 

  197. Bazgir A, Khanaposhtani MM, Ghahremanzadeh R, Soorki AA (2009) A clean, three-component and one-pot cyclo-condensation to pyrimidine-fused heterocycles. C R Chim 12:1287–1295

    Article  CAS  Google Scholar 

  198. Wang S-L, Liu Y-P, Xu B-H, Wang X-H, Jiang B, Tu S-J (2011) Microwave-assisted chemoselective reaction: a divergent synthesis of pyrazolopyridine derivatives with different substituted patterns. Tetrahedron 67:9417–9425

    Article  CAS  Google Scholar 

  199. Wan Y, Huang SY, Liu GX, Chen LF, Yue SN, Zhang WL, Zou H, Zhang LZ, Cui H, Zhou SL (2016) A catalyst-free synthesis of pyrazolopyridines derived from alicyclic mono-ketones. J Heterocycl Chem 53:1715–1720

    Article  CAS  Google Scholar 

  200. Jiang B, Liang Y-B, Kong L-F, Tu X-J, Hao W-J, Ye Q, Tu S-J (2014) Highly diastereoselective synthesis of quinoline-2, 5-diones and pyrazolo [3,4-b] pyridin-6 (7H)-ones under microwave irradiation. RSC Adv 4:54480–54486

    Article  CAS  Google Scholar 

  201. Shi CL, Chen H, Shi DQ (2011) An efficient one-pot synthesis of pyrazolo [3,4-b] pyridinone derivatives catalyzed by L-proline. J Heterocycl Chem 48:351–354

    Article  CAS  Google Scholar 

  202. Komogortsev AN, Lichitsky BV, Dudinov AA, Krylov KS, Bogacheva AM, Kobeleva OI, Barachevskii VA, Krayushkin MM (2013) Three-component condensation of iminoazolidines with aldehydes and 5-aminopyrazole. Mendeleev Commun 23:222–223

    Article  CAS  Google Scholar 

  203. Nam N, Grandberg I, Sorokin V (2002) Pyrazolopyrimidines based on 5-aminopyrazoles unsubstituted at the position 1. Chem Heterocycl Compd 38:1371–1374

    Article  CAS  Google Scholar 

  204. Zeng L-Y, Liu T, Yang J, Yang Y, Cai C, Liu S (2017) “On-water” facile synthesis of novel pyrazolo [3,4-b] pyridinones possessing anti-influenza virus activity. ACS Comb Sci 19:437–446

    Article  CAS  PubMed  Google Scholar 

  205. Hemmati S, Safarimehr P, Safaei M, Hekmati M (2017) One-pot green synthesis of 3-methyl-4-aryl-2, 4, 5, 7-tetrahydropyrazolo [3,4-b] pyridine-6-ones by multicomponent assembling of 5-methylpyrazol-3-amine, aldehydes, and Meldrum’s acid using sodium dodecyl sulfate (SDS) in water. J Heterocycl Chem 54:1640–1644

    Article  CAS  Google Scholar 

  206. Quiroga J, Diaz Y, Bueno J, Insuasty B, Abonia R, Ortiz A, Nogueras M, Cobo J (2014) Microwave induced three-component synthesis and antimycobacterial activity of benzopyrazolo [3,4-b] quinolindiones. Eur J Med Chem 74:216–224

    Article  CAS  PubMed  Google Scholar 

  207. Quiroga J, Portilla J, Serrano H, Abonía R, Insuasty B, Nogueras M, Cobo J (2007) Regioselective synthesis of fused benzopyrazolo [3,4-b] quinolines under solvent-free conditions. Tetrahedron Lett 48:1987–1990

    Article  CAS  Google Scholar 

  208. Manickam S, Balijapalli U, Sathiyanarayanan KI (2018) SnCl 2-catalyzed synthesis of dihydro-5 H-benzo [f] pyrazolo [3,4-b] quinoline and dihydroindeno [2,1-b] pyrazolo [4,3-e] pyridine with high fluorescence and their photophysical properties. N J Chem 42:860–871

    Article  CAS  Google Scholar 

  209. Shi DQ, Yang F (2008) Ionic liquid as an efficient promoting medium for synthesis of bis-pyrazolo [3,4-b: 4′, 3′-e] pyridines. J Chin Chem Soc 55:755–760

    Article  CAS  Google Scholar 

  210. Quiroga J, Trilleras J, Pantoja D, Abonía R, Insuasty B, Nogueras M, Cobo J (2010) Microwave-assisted synthesis of pyrazolo [3,4-b] pyridine-spirocycloalkanediones by three-component reaction of 5-aminopyrazole derivatives, paraformaldehyde and cyclic β-diketones. Tetrahedron Lett 51:4717–4719

    Article  CAS  Google Scholar 

  211. Bagley MC, Baashen M, Paddock VL, Kipling D, Davis T (2013) Regiocontrolled synthesis of 3-and 5-aminopyrazoles, pyrazolo [3,4-d] pyrimidines, pyrazolo [3,4-b] pyridines and pyrazolo [3,4-b] quinolinones as MAPK inhibitors. Tetrahedron 69:8429–8438

    Article  CAS  Google Scholar 

  212. An H, Eum S-J, Koh M, Lee SK, Park SB (2008) Diversity-oriented synthesis of privileged benzopyranyl heterocycles from s-cis-enones. J Org Chem 73:1752–1761

    Article  CAS  PubMed  Google Scholar 

  213. Petrova ON, Zamigajlo LL, Shishkina SV, Shishkin OV, Musatov VI, Borisov AV, Lipson VV (2013) A facile one-pot highly chemo-and regioselective synthesis of the novel heterocyclic system indolo [1,2-c] azolo [1,5-a] quinazoline-8, 10-dione. Tetrahedron 69:11185–11190

    Article  CAS  Google Scholar 

  214. Sadek KU, Mekheimer RA, Mohamed TM, Moustafa MS, Elnagdi MH (2012) Regioselectivity in the multicomponent reaction of 5-aminopyrazoles, cyclic 1, 3-diketones and dimethylformamide dimethylacetal under controlled microwave heating. Beilstein J Org Chem 8:18–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Ghotekar BK, Jachak MN, Toche RB (2009) New one-step synthesis of pyrazolo [1,5-a] pyrimidine and pyrazolo [1,5-a] quinazoline derivatives via multicomponent reactions. J Heterocycl Chem 46:708–713

    Article  CAS  Google Scholar 

  216. Yoshida M, Mori A, Inaba A, Oka M, Makino H, Yamaguchi M, Fujita H, Kawamoto T, Goto M, Kimura H (2010) Synthesis and structure–activity relationship of tetrahydropyrazolopyrimidine derivatives—a novel structural class of potent calcium-sensing receptor antagonists. Bioorgan Med Chem 18:8501–8511

    Article  CAS  Google Scholar 

  217. Danagulyan G, Panosyan G, Boyakhchyan A (2002) Synthesis of n-alkylated derivatives of pyrazolo [1,5-a] pyrimidine and their reaction with methylamine. Chem Heterocycl Compd 38:581–585

    Article  CAS  Google Scholar 

  218. Fraley ME, Hoffman WF, Rubino RS, Hungate RW, Tebben AJ, Rutledge RZ, McFall RC, Huckle WR, Kendall RL, Coll KE (2002) Synthesis and initial sar studies of 3, 6-disubstituted pyrazolo [1,5-a] pyrimidines: a new class of KDR kinase inhibitors. Bioorgan Med Chem Lett 12:2767–2770

    Article  CAS  Google Scholar 

  219. Ren L, Laird ER, Buckmelter AJ, Dinkel V, Gloor SL, Grina J, Newhouse B, Rasor K, Hastings G, Gradl SN (2012) Potent and selective pyrazolo [1,5-a] pyrimidine based inhibitors of B-RafV600E kinase with favorable physicochemical and pharmacokinetic properties. Bioorgan Med Chem Lett 22:1165–1168

    Article  CAS  Google Scholar 

  220. Finlay HJ, Jiang J, Caringal Y, Kover A, Conder ML, Xing D, Levesque P, Harper T, Hsueh MM, Atwal K (2013) Triazolo and imidazo dihydropyrazolopyrimidine potassium channel antagonists. Bioorgan Med Chem Lett 23:1743–1747

    Article  CAS  Google Scholar 

  221. Finlay HJ, Lloyd J, Vaccaro W, Kover A, Yan L, Bhave G, Prol J, Huynh T, Bhandaru R, Caringal Y (2012) Discovery of ((S)-5-(methoxymethyl)-7-(1-methyl-1H-indol-2-yl)-2-(trifluoromethyl)-4, 7-dihydropyrazolo [1,5-a] pyrimidin-6-yl)((S)-2-(3-methylisoxazol-5-yl) pyrrolidin-1-yl) methanone as a potent and selective Ikur inhibitor. J Med Chem 55:3036–3048

    Article  CAS  PubMed  Google Scholar 

  222. Hwang JY, Windisch MP, Jo S, Kim K, Kong S, Kim HC, Kim S, Kim H, Lee ME, Kim Y (2012) Discovery and characterization of a novel 7-aminopyrazolo [1,5-a] pyrimidine analog as a potent hepatitis c virus inhibitor. Bioorgan Med Chem Lett 22:7297–7301

    Article  CAS  Google Scholar 

  223. Lloyd J, Finlay HJ, Atwal K, Kover A, Prol J, Yan L, Bhandaru R, Vaccaro W, Huynh T, Huang CS (2009) Dihydropyrazolopyrimidines containing benzimidazoles as KV1.5 potassium channel antagonists. Bioorgan Med Chem Lett 19:5469–5473

    Article  CAS  Google Scholar 

  224. Coumar MS, Wu J-S, Leou J-S, Tan U-K, Chang C-Y, Chang T-Y, Lin W-H, Hsu JT-A, Chao Y-S, Wu S-Y (2008) Aurora kinase A inhibitors: identification, SAR exploration and molecular modeling of 6, 7-dihydro-4H-pyrazolo-[1,5-a] pyrrolo [3,4-d] pyrimidine-5, 8-dione scaffold. Bioorgan Med Chem Lett 18:1623–1627

    Article  CAS  Google Scholar 

  225. Larsen SD, Spilman CH, Bell FP, Dinh DM, Martinborough E, Wilson GJ (1991) Synthesis and hypocholesterolemic activity of 6, 7-dihydro-4H-pyrazolo [1,5-a] pyrrolo [3,4-d] pyrimidine-5, 8-diones, novel inhibitors of acylcoa: cholesterol o-acyltransferase. J Med Chem 34:1721–1727

    Article  CAS  PubMed  Google Scholar 

  226. Senga K, Novinson T, Wilson HR, Robins RK (1981) Synthesis and antischistosomal activity of certain pyrazolo [1,5-a] pyrimidines. J Med Chem 24:610–613

    Article  CAS  PubMed  Google Scholar 

  227. Bruni F, Costanzo A, Selleri S, Guerrini G, Fantozzi R, Pirisino R, Brunelleschi S (1993) Synthesis and study of the anti-inflammatory properties of some pyrazolo [1,5-a] pyrimidine derivatives. J Pharm Sci 82:480–486

    Article  CAS  PubMed  Google Scholar 

  228. Ghelani SM, Naliapara YT (2016) Design, multicomponent synthesis and characterization of diversely substituted pyrazolo [1,5-a] pyrimidine derivatives. J Heterocycl Chem 53:1843–1851

    Article  CAS  Google Scholar 

  229. Paruch K, Dwyer MP, Alvarez C, Brown C, Chan T-Y, Doll RJ, Keertikar K, Knutson C, McKittrick B, Rivera J (2010) Discovery of dinaciclib (SCH 727965): a potent and selective inhibitor of cyclin-dependent kinases. ACS Med. Chem. Lett. 1:204–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Tian Y, Du D, Rai D, Wang L, Liu H, Zhan P, De Clercq E, Pannecouque C, Liu X (2014) Fused heterocyclic compounds bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 1: design, synthesis and biological evaluation of novel 5, 7-disubstituted pyrazolo [1,5-a] pyrimidine derivatives. Bioorgan Med Chem 22:2052–2059

    Article  CAS  Google Scholar 

  231. Gavrin LK, Lee A, Provencher BA, Massefski WW, Huhn SD, Ciszewski GM, Cole DC, McKew JC (2007) Synthesis of pyrazolo [1,5-α] pyrimidinone regioisomers. J Org Chem 72:1043–1046

    Article  CAS  PubMed  Google Scholar 

  232. Aghazadeh Tabrizi M, Baraldi PG, Saponaro G, Moorman AR, Romagnoli R, Preti D, Baraldi S, Ruggiero E, Tintori C, Tuccinardi T (2013) Discovery of 7-oxopyrazolo [1,5-a] pyrimidine-6-carboxamides as potent and selective CB2 cannabinoid receptor inverse agonists. J Med Chem 56:4482–4496

    Article  CAS  PubMed  Google Scholar 

  233. Danagulyan G, Boyakhchyan A, Danagulyan A, Panosyan H (2011) C–C recyclizations of some 2, 7-disubstituted 6-ethoxycarbonylpyrazolo [1,5-a] pyrimidines. Chem Heterocycl Compd 47:321–331

    Article  CAS  Google Scholar 

  234. Danagulyan G (2005) Kost-Sagitullin rearrangement and other isomerization recyclizations of pyrimidines. Chem Heterocycl Compd 41:1205–1236

    Article  CAS  Google Scholar 

  235. Abdelrazek FM, Sobhy NA, Metz P, Bazbouz AA (2012) Synthetic studies with 3-Oxo-N-[4-(3-oxo-3-phenylpropionylamino)-phenyl]-3-phenylpropionamide. J Heterocycl Chem 49:381–387

    Article  CAS  Google Scholar 

  236. Shaaban MR (2008) Microwave-assisted synthesis of fused heterocycles incorporating trifluoromethyl moiety. J Fluor Chem 129:1156–1161

    Article  CAS  Google Scholar 

  237. Springer RH, Scholten M, O’Brien DE, Novinson T, Miller JP, Robins RK (1982) Synthesis and enzymic activity of 6-carbethoxy-and 6-ethoxy-3, 7-disubstituted pyrazolo [1,5-a] pyrimidines and related derivatives as adenosine cyclic 3′, 5′-phosphate phosphodiesterase inhibitors. J Med Chem 25:235–242

    Article  CAS  PubMed  Google Scholar 

  238. Elgemeie GE, Ali HA, Mansour A-K (1994) Antimetabolites: a convenient synthesis of mercaptopurine and thioguanine analogues. Phosphorus Sulfur Silicon Relat Elem 90:143–146

    Article  CAS  Google Scholar 

  239. Ryabukhin SV, Granat DS, Plaskon AS, Shivanyuk AN, Tolmachev AA, Volovenko YM (2012) High throughput synthesis of extended pyrazolo [3,4-d] dihydropyrimidines. ACS Comb Sci 14:465–470

    Article  CAS  PubMed  Google Scholar 

  240. Elgemeie GH, El-Ezbawy SR, El-Aziz HA (2001) The design and synthesis of structurally related mercaptopurine analogues: reaction of dimethyl N-cyano-dithioiminocarbonate with 5-aminopyrazoles. Synth Commun 31:3453–3458

    Article  CAS  Google Scholar 

  241. Senga K, O’Brien DE, Scholten MB, Novinson T, Miller JP, Robins RK (1982) Synthesis and enzymic activity of various substituted pyrazolo [1,5-a]-1, 3, 5-triazines as adenosine cyclic 3′, 5′-phosphate phosphodiesterase inhibitors. J Med Chem 25:243–249

    Article  CAS  PubMed  Google Scholar 

  242. Kiselyov AS, Smith L (2006) Novel one pot synthesis of polysubstituted pyrazolo [1,5-a]-and imidazo [1,2-a] pyrimidines. Tetrahedron Lett 47:2611–2614

    Article  CAS  Google Scholar 

  243. Murlykina MV, Sakhno YI, Desenko SM, Konovalova IS, Shishkin OV, Sysoiev DA, Kornet MN, Chebanov VA (2013) Features of switchable multicomponent heterocyclizations of salicylic aldehydes and 5-aminopyrazoles with pyruvic acids and antimicrobial activity of the reaction products. Tetrahedron 69:9261–9269

    Article  CAS  Google Scholar 

  244. Lim FPL, Dolzhenko AV (2014) 4-amino-substituted pyrazolo [1,5-a][1, 3, 5] triazin-2-amines: a new practical synthesis and biological activity. Tetrahedron Lett 55:6684–6688

    Article  CAS  Google Scholar 

  245. Lim FPL, Luna G, Dolzhenko AV (2014) A new, one-pot, multicomponent synthesis of 5-aza-9-deaza-adenines under microwave irradiation. Tetrahedron Lett 55:5159–5163

    Article  CAS  Google Scholar 

  246. Lim FPL, Luna G, Dolzhenko AV (2015) A one-pot, three-component aminotriazine annulation onto 5-aminopyrazole-4-carbonitriles under microwave irradiation. Tetrahedron Lett 56:521–524

    Article  CAS  Google Scholar 

  247. Marinozzi M, Carotti A, Sardella R, Buonerba F, Ianni F, Natalini B, Passeri D, Rizzo G, Pellicciari R (2013) Asymmetric synthesis of the four diastereoisomers of a novel non-steroidal farnesoid X receptor (FXR) agonist: role of the chirality on the biological activity. Bioorgan Med Chem 21:3780–3789

    Article  CAS  Google Scholar 

  248. Chen H, Shi D (2011) Efficient one-pot synthesis of spiro [indoline-3,4′-pyrazolo [3,4-e][1, 4] thiazepine] dione via three-component reaction. Tetrahedron 67:5686–5692

    Article  CAS  Google Scholar 

  249. Jadhav AM, Balwe SG, Lim KT, Jeong YT (2017) A novel three-component method for the synthesis of spiro [chromeno [4′, 3′: 4, 5] pyrimido [1,2-b] indazole-7, 3′-indoline]-2′, 6 (9H)-dione. Tetrahedron 73:2806–2813

    Article  CAS  Google Scholar 

  250. Insuasty H, Insuasty B, Castro E, Quiroga J, Abonia R (2013) An efficient two-step synthesis of novel 2-amino-substituted pyrazolo [1,5-a][1, 3, 5] triazines. Tetrahedron Lett 54:1722–1725

    Article  CAS  Google Scholar 

  251. Abonia R, Rengifo E, Quiroga J, Insuasty B, Cobo J, Nogueras M (2004) Synthesis of novel hydropyrazolopyridine derivatives in solvent-free conditions via benzotriazole methodology. Tetrahedron 60:8839–8843

    Article  CAS  Google Scholar 

  252. Gálvez J, Quiroga J, Insuasty B, Abonia R (2014) Microwave-assisted and iodine mediated synthesis of 5-N-alkyl-cycloalkane [d]-pyrazolo [3,4-b] pyridines from 5-aminopyrazoles and cyclic ketones. Tetrahedron Lett 55:1998–2002

    Article  CAS  Google Scholar 

  253. Abonia R, Rengifo E, Quiroga J, Insuasty B, Sánchez A, Cobo J, Low J, Nogueras M (2002) An unexpected chemical behavior of 5-N-(benzotriazol-1-ylmethyl) amino-3-tert-butyl-1-phenylpyrazole. Tetrahedron Lett 43:5617–5620

    Article  CAS  Google Scholar 

  254. Rahmati A, Kouzehrash MA (2011) Synthesis of N-alkyl-2-aryl-5H-imidazo [1,2-b] pyrazol-3-amines by a three-component condensation reaction. Synthesis 2011:2913–2920

    Article  CAS  Google Scholar 

  255. Demjén A, Gyuris M, Wölfling J, Puskás LG, Kanizsai I (2014) Facile synthesis of 1H-imidazo [1,2-b] pyrazoles via a sequential one-pot synthetic approach. Beilstein J Org Chem 10:2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Rahmati A, Eskandari-Vashareh M, Alizadeh-Kouzehrash M (2013) Synthesis of 3-(benzylideneamino)-2-phenyl-5H-imidazo [1,2-b] pyrazole-7-carbonitriles via a four-component condensation reaction. Tetrahedron 69:4199–4204

    Article  CAS  Google Scholar 

  257. Rahmani F, Mohammadpoor-Baltork I, Khosropour AR, Moghadam M, Tangestaninejad S, Mirkhani V (2017) Novel multicomponent synthesis of pyridine–pyrimidines and their bis-derivatives catalyzed by triazine diphosphonium hydrogen sulfate ionic liquid supported on functionalized nanosilica. ACS Comb Sci 20:19–25

    Article  CAS  PubMed  Google Scholar 

  258. Rao HSP, Adigopula LN, Ramadas K (2017) One-pot synthesis of densely substituted pyrazolo [3,4-b]-4, 7-dihydropyridines. ACS Comb Sci 19:279–285

    Article  CAS  PubMed  Google Scholar 

  259. Simpkins NS, Foster R, Lenz E, Stead D (2017) Organocatalytic stereoconvergent synthesis of α-CF3 amides; triketopiperazines and their heterocyclic metamorphosis. Chem A Eur J 23:8810–8813

    Article  CAS  Google Scholar 

  260. Khan MF, Alam MM, Verma G, Akhtar W, Akhter M, Shaquiquzzaman M (2016) The therapeutic voyage of pyrazole and its analogs: a review. Eur J Med Chem 120:170–201

    Article  CAS  PubMed  Google Scholar 

  261. Nargund L, Hariprasad V, Reddy G (1992) Synthesis and anti-inflammatory activity of fluorinated phenyl styryl ketones and N-phenyl-5-substituted aryl-3-p-(fluorophenyl) pyrazolins and pyrazoles. J Pharm Sci 81:892–894

    Article  CAS  PubMed  Google Scholar 

  262. Bekhit AA, Ashour H, Guemei AA (2005) Novel pyrazole derivatives as potential promising anti-inflammatory antimicrobial agents. Arch Pharm 338:167–174

    Article  CAS  Google Scholar 

  263. Abdel-Aziz M, Abuo-Rahma GE-DA, Hassan AA (2009) Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur J Med Chem 44:3480–3487

    Article  CAS  PubMed  Google Scholar 

  264. Ramírez-Prada J, Robledo SM, Vélez ID, del Pilar Crespo M, Quiroga J, Abonia R, Montoya A, Svetaz L, Zacchino S, Insuasty B (2017) Synthesis of novel quinoline–based 4, 5–dihydro–1H–pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur J Med Chem 131:237–254

    Article  CAS  PubMed  Google Scholar 

  265. Bondock S, Fadaly W, Metwally MA (2010) Synthesis and antimicrobial activity of some new thiazole, thiophene and pyrazole derivatives containing benzothiazole moiety. Eur J Med Chem 45:3692–3701

    Article  CAS  PubMed  Google Scholar 

  266. Park H-J, Lee K, Park S-J, Ahn B, Lee J-C, Cho H, Lee K-I (2005) Identification of antitumor activity of pyrazole oxime ethers. Bioorgan Med Chem Lett 15:3307–3312

    Article  CAS  Google Scholar 

  267. Abdelall EK, Lamie PF, Ali WA (2016) Cyclooxygenase-2 and 15-lipoxygenase inhibition, synthesis, anti-inflammatory activity and ulcer liability of new celecoxib analogues: determination of region-specific pyrazole ring formation by noesy. Bioorgan Med Chem Lett 26:2893–2899

    Article  CAS  Google Scholar 

  268. Gouda MA, Hamama WS (2017) Overview of the synthetic routes to sildenafil and its analogues. Synth Commun 47:1–32

    Article  CAS  Google Scholar 

  269. Huang D, Huang M, Liu A, Liu X, Liu W, Chen X, Xue H, Sun J, Yin D, Wang X (2017) Design, synthesis, and acaricidal activities of novel pyrazole acrylonitrile compounds. J Heterocycl Chem 54:1121–1128

    Article  CAS  Google Scholar 

  270. Lindsley CW, Wisnoski DD, Leister WH, O’Brien JA, Lemaire W, Williams DL, Burno M, Sur C, Kinney GG, Pettibone DJ (2004) Discovery of positive allosteric modulators for the metabotropic glutamate receptor subtype 5 from a series of N-(1, 3-diphenyl-1H-pyrazol-5-yl) benzamides that potentiate receptor function in vivo. J Med Chem 47:5825–5828

    Article  CAS  PubMed  Google Scholar 

  271. Wenglowsky S, Ren L, Ahrendt KA, Laird ER, Aliagas I, Alicke B, Buckmelter AJ, Choo EF, Dinkel V, Feng B (2011) Pyrazolopyridine inhibitors of B-RafV600E. Part 1: the development of selective, orally bioavailable, and efficacious inhibitors. ACS Med Chem Lett 2:342–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Moree WJ, Goldman P, Demaggio AJ, Christenson E, Herendeen D, Eksterowicz J, Kesicki EA, McElligott DL, Beaton G (2008) Identification of ring-fused pyrazolo pyridin-2-ones as novel poly (ADP-ribose) polymerase-1 inhibitors. Bioorgan Med Chem Lett 18:5126–5129

    Article  CAS  Google Scholar 

  273. Beinat C, Reekie T, Banister SD, O’Brien-Brown J, Xie T, Olson TT, Xiao Y, Harvey A, O’Connor S, Coles C (2015) Structure–activity relationship studies of SEN12333 analogues: determination of the optimal requirements for binding affinities at α7 nAChRs through incorporation of known structural motifs. Eur J Med Chem 95:277–301

    Article  CAS  PubMed  Google Scholar 

  274. Cheng K-M, Huang Y-Y, Huang J-J, Kaneko K, Kimura M, Takayama H, Juang S-H, Wong FF (2010) Synthesis and antiproliferative evaluation of N, N-disubstituted-N′-[1-aryl-1H-pyrazol-5-yl]-methnimidamides. Bioorgan Med Chem Lett 20:6781–6784

    Article  CAS  Google Scholar 

  275. Gudmundsson KS, Johns BA, Weatherhead J (2009) Pyrazolopyrimidines and pyrazolotriazines with potent activity against herpesviruses. Bioorgan Med Chem Lett 19:5689–5692

    Article  CAS  Google Scholar 

  276. Bagley MC, Dwyer JE, Baashen M, Dix MC, Murziani PG, Rokicki MJ, Kipling D, Davis T (2016) The effect of RO3201195 and a pyrazolyl ketone P38 MAPK inhibitor library on the proliferation of Werner syndrome cells. Org Biomol Chem 14:947–956

    Article  CAS  PubMed  Google Scholar 

  277. Nasiri AH, Saxena K, Bats JW, Nasiri HR, Schwalbe H (2016) Biophysical investigation and conformational analysis of p38α kinase inhibitor doramapimod and its analogues. MedChemComm 7:1421–1428

    Article  CAS  Google Scholar 

  278. Moe ST, Thompson AB, Smith GM, Fredenburg RA, Stein RL, Jacobson AR (2009) Botulinum neurotoxin serotype a inhibitors: small-molecule mercaptoacetamide analogs. Bioorgan Med Chem 17:3072–3079

    Article  CAS  Google Scholar 

  279. Takahashi T, Sakuraba A, Hirohashi T, Shibata T, Hirose M, Haga Y, Nonoshita K, Kanno T, Ito J, Iwaasa H (2006) Novel potent neuropeptide Y Y5 receptor antagonists: synthesis and structure–activity relationships of phenylpiperazine derivatives. Bioorgan Med Chem 14:7501–7511

    Article  CAS  Google Scholar 

  280. Wen W, Wu W, Romaine IM, Kaufmann K, Du Y, Sulikowski GA, Weaver CD, Lindsley CW (2013) Discovery of ‘molecular switches’ within a GIRK activator scaffold that afford selective GIRK inhibitors. Bioorgan Med Chem Lett 23:4562–4566

    Article  CAS  Google Scholar 

  281. Lee S, Jo A, Park SB (2013) Discovery of a highly selective FLT3 kinase inhibitor from phenotypic cell viability profiling. MedChemComm 4:228–232

    Article  CAS  Google Scholar 

  282. Cuny GD, Paul BY, Laha JK, Xing X, Liu J-F, Lai CS, Deng DY, Sachidanandan C, Bloch KD, Peterson RT (2008) Structure–activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors. Bioorgan Med Chem Lett 18:4388–4392

    Article  CAS  Google Scholar 

  283. Kumar AA, Bodke YD, Lakra PS, Sambasivam G, Bhat KG (2017) Design, synthesis and anti-cancer evaluation of a novel series of pyrazolo [1,5-a] pyrimidine substituted diamide derivatives. Med Chem Res 26:714–744

    Article  CAS  Google Scholar 

  284. Zhou B, Hu J, Xu F, Chen Z, Bai L, Fernandez-Salas E, Lin M, Liu L, Yang C-Y, Zhao Y (2017) Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression. J Med Chem 61:462–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Wang T, Bemis G, Hanzelka B, Zuccola H, Wynn M, Moody CS, Green J, Locher C, Liu A, Gao H (2017) Mtb PKNA/PKNB dual inhibition provides selectivity advantages for inhibitor design to minimize host kinase interactions. ACS Med Chem Lett 8:1224–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Chino A, Seo R, Amano Y, Namatame I, Hamaguchi W, Honbou K, Mihara T, Yamazaki M, Tomishima M, Masuda N (2018) Fragment-based discovery of pyrimido [1,2-b] indazole PDE10A inhibitors. Chem Pharm Bull 66:286–294

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Iran National Science Foundation (INSF) and the Research Council of Shahid Beheshti University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Shaabani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaabani, A., Nazeri, M.T. & Afshari, R. 5-Amino-pyrazoles: potent reagents in organic and medicinal synthesis. Mol Divers 23, 751–807 (2019). https://doi.org/10.1007/s11030-018-9902-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9902-8

Keywords

Navigation