Skip to main content
Log in

Effects of Hot-Water Aging on the Compression Properties of E-Glass/Epoxy Composites at Varying Strain Rates

  • Published:
Mechanics of Composite Materials Aims and scope

The effects of hot-water aging on the quasi-static and dynamic compression properties of unidirectional E-glass/epoxy laminates were investigated. E-glass/epoxy specimens were aged in water at 60°C for 4900 h and then aged and unaged specimens were tested in compression at a rate of 1.3·10–3 s–1 and by a split Hopkinson pressure bar apparatus at varying strain rates. Their diffusion behavior was successfully described by the two-stage model whose parameters were found by the nonlinear regression method. The strain-rate-sensitivity of aged and unaged E-glass-reinforced epoxy specimens in the longitudinal direction was studied. Their dynamic and static compression properties were compared for specimens with the same dimensions. Empirical models were proposed to predict dynamic properties as functions of strain rate. SEM micrographs showed a low degradation of the resin matrix and fiber-matrix interface at hot-water aging for a time up to 4900 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. L. Sutherland, “A review of impact testing on marine composite materials: part iii-damage tolerance and durability,” Compos. Struct., 188, Mar., 512-518 (2018).

  2. F. Rubino, A. Nisticò, F. Tucci, and P. Carlone, “Marine application of fiber reinforced composites: A review,” J. Mar. Sci. Eng., 8, No.1, 26 (2020).

    Article  Google Scholar 

  3. Y. Joliff, L. Bélec, and J. F. Chailan, “Modified water diffusion kinetics in an unidirectional glass/fibre composite due to the interphase area: Experimental, analytical and numerical approach,” Compos. Struct., 97, Mar., 296-303 (2013).

  4. B. D. Harper, G. H. Staab, and R. S. Chen, “A note on the effects of voids upon the hygral and mechanical properties of AS4/3502 graphite/epoxy,” J. Compos. Mater., 21, No.3, 280-289 (1987).

    Article  CAS  Google Scholar 

  5. L. Kumosa, B. Benedikt, D. Armentrout, and M. Kumosa, “Moisture absorption properties of unidirectional glass/polymer composites used in composite (non-ceramic) insulators,” Compos. Part Appl. Sci. Manuf., 35, No. 9, 1049-1063 (2004).

    Article  Google Scholar 

  6. L.-R. Bao, A. F. Yee, and C. Y.-C. Lee, “Moisture Absorption and hygrothermal aging in a bismaleimide resin,” Polymer, 42, No. 17, 7327-7333 (2001).

    Article  CAS  Google Scholar 

  7. J. J. M. Machado, E. A. S. Marques, A. Q. Barbosa, and L. F. da Silva, “Effect of hygrothermal aging on the quasi-static behaviour of CFRP joints varying the overlap length,” Compos. Struct., 214, Apr., 451-462 (2019).

  8. H. G. Carter and K. G. Kibler, “Langmuir-type model for anomalous moisture diffusion in composite resins,” J. Compos. Mater., 12, No. 2, 118-131 (1978).

    Article  Google Scholar 

  9. P. Kumar, A. Garg, and B. Agarwal, “Dynamic compressive behaviour of unidirectional gfrp for various fibre orientations,” Mater. Lett., 4, No. 2, 111-116 (1986).

    Article  Google Scholar 

  10. H. M. Hsiao, I. M. Daniel, and R. D. Cordes, “Dynamic compressive behavior of thick composite materials,” Exp. Mech., 38, No. 3, 172-180 (1998).

    Article  CAS  Google Scholar 

  11. R. O. Ochola, K. Marcus, G. N. Nurick, and T. Franz, “Mechanical behaviour of glass and carbon fibre reinforced composites at varying strain rates,” Compos. Struct., 63, No. 3, 455-467 (2004).

    Article  Google Scholar 

  12. M. Hosur, J. Alexander, U. Vaidya, and S. Jeelani, “High strain rate compression response of carbon/epoxy laminate composites,” Compos. Struct., 52, No. 3-4, 405-417 (2001).

    Article  Google Scholar 

  13. M. Tarfaoui and M. Nachtane, “Staking lay-up effect on dynamic compression behaviour of E-glass/epoxy composite materials: Experimental and numerical investigation,” Adv. Mater. Lett., 9, No. 11, 816-822 (2018).

    Article  CAS  Google Scholar 

  14. M. Tarfaoui, A. Nême, and S. Choukri, “Damage kinetics of glass/epoxy composite materials under dynamic compression,” J. Compos. Mater., 43, No. 10, 1137-1154 (2009).

    Article  Google Scholar 

  15. T. Mostapha, in : Brahim Attaf (eds.), Experimental Investigation of Dynamic Compression and Damage Kinetics of Glass/Epoxy Laminated Composites under High Strain Rate Compression, Ch.16, Advances in Composite Materials-Ecodesign and Analysis, IntechOpen Limited, London, UK (2011).

  16. L. Gueraiche, M. Tarfaoui, H. Osmani, and A. Aboulghit El Malki, “A practical note for SHPB test with new algorithms for delimiting pulses,” Compos. Struct., 126, Aug., 145-158 (2015).

  17. M. K. Antoon and J. L. Koenig, “The structure and moisture stability of the matrix phase in glass-reinforced epoxy composites,” J. Macromol. Sci. Part C, 19, No. 1, 135-173 (1980).

    Article  Google Scholar 

  18. Y. Chen, J. F. Davalos, I. Ray, and H.-Y. Kim, “Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures,” Compos. Struct., 78, No. 1, 101-111 (2007).

    Article  Google Scholar 

  19. R. D. Bradshaw and L. C. Brinson, “Physical aging in polymers and polymer composites: An analysis and method for time-aging time superposition,” Polym. Eng. Sci., 37, No. 1, 31-44 (1997).

    Article  CAS  Google Scholar 

  20. I. F. Soykok, O. Sayman, and A. Pasinli, “Effects of hot water aging on failure behavior of mechanically fastened glass fiber/epoxy composite joints,” Compos. Part B Eng., 54, Nov., 59-70 (2013).

  21. S. Wosu, D. Hui, and L. Daniel, “Hygrothermal effects on the dynamic compressive properties of graphite/epoxy composite material,” Compos. Part B Eng., 43, No. 3, 841-855 (2012).

    Article  CAS  Google Scholar 

  22. M. Nachtane, M. Tarfaoui, S. Sassi, A. El Moumen, and D. Saifaoui, “An investigation of hygrothermal aging effects on high strain rate behaviour of adhesively bonded composite joints,” Compos. Part B Eng., 172, Sept., 111-120 (2019).

  23. T. Gentry, L. Bank, A. Barkatt, and L. Prian, “Accelerated test methods to determine the long-term behavior of composite highway structures subject to environmental loading,” J. Compos. Technol. Res., 20, No. 1, 38-50 (1998).

    Article  CAS  Google Scholar 

  24. S. Ma, Y. He, L. Hui, and L. Xu, “Effects of hygrothermal and thermal aging on the low-velocity impact properties of carbon fiber composites,” Adv. Compos. Mater., 29, No. 1, 55-72 (2020).

    Article  Google Scholar 

  25. A. R. Berens and H. B. Hopfenberg, “Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters,” Polymer, 19, No. 5, 489-496 (1978).

    Article  CAS  Google Scholar 

  26. L.-R. Bao and A. F. Yee, “Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber compositespart I: Uni-weave composites,” Compos. Sci. Technol., 62, No. 16, 2099-2110 (2002).

    Article  CAS  Google Scholar 

  27. J. Zhang, X. Cheng, X. Guo, J. Bao, and W. Huang, “Effect of environment conditions on adhesive properties and material selection in composite bonded joints,” Int. J. Adhes. Adhes., 96, Jan., 102302 (2020).

  28. H. M. Hsiao and I. M. Daniel, “Strain rate behavior of composite materials,” Compos. Part B Eng., 29, No. 5, 521-533 (1998).

    Article  Google Scholar 

  29. J. Wang, H. GangaRao, R. Liang, and W. Liu, “Durability and prediction models of fiber-reinforced polymer composites under various environmental conditions: A critical review,” J. Reinf. Plast. Compos., 35, No. 3, 179-211 (2016).

    Article  Google Scholar 

  30. P. Nogueira, C. Ramirez, A. Torres, M. J. Abad, J. Cano, J. Lopez, I. López-Bueno, and L. Barral, “Effect of water sorption on the structure and mechanical properties of an epoxy resin system,” J. Appl. Polym. Sci., 80, No. 1, 71-80 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the General Directorate of Scientific Research and Technological Development- DGRSDT (MESRS) of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gueraiche.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 58, No. 1, pp. 115-138, January-February, 2021. Russian DOI: 10.22364/mkm.58.1.07.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gueraiche, L., Tarfaoui, M. & Osmani, H. Effects of Hot-Water Aging on the Compression Properties of E-Glass/Epoxy Composites at Varying Strain Rates. Mech Compos Mater 58, 81–96 (2022). https://doi.org/10.1007/s11029-022-10013-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-022-10013-6

Keywords

Navigation