Skip to main content
Log in

A Modal Analysis of Forced Vibration of a Piezoelectric Plate with Initial Stress by the Finite-Element Simulation

  • Published:
Mechanics of Composite Materials Aims and scope

A modal analysis of forced vibrations caused by a time-harmonic force from a piezoelectric plate standing on a rigid foundation is presented. A 3D linearized elasticity theory for solids under initial stress (TLTESIS) is used. It is assumed that a uniformly distributed normal loadings acting on the lateral surfaces of the plate yield the initial stress state. The piezoelectric plate is under the action of a time-harmonic force poled in various directions. A mathematical model is developed, and the problem is solved employing the 3D finite-element method (3D-FEM). Some numerical results illustrating the influence of changes in the poling direction and other important factors, such as the initial stress, on the dynamic behavior of the plate are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. P. Kumar, M. Mahanty, A. Chattopadhyay and A. K. Singh, “Effect of interfacial imperfection on shear wave propagation in a piezoelectric composite structure: Wentzel–Kramers–Brillouin asymptotic approach,” J. Intell. Mater. Syst. Struct., 30, No. 18-19, 2789-2807 (2019).

    Article  Google Scholar 

  2. M. Mahanty, A. Chattopadhyay, P. Kumar and A. K. Singh, “Effect of initial stress, heterogeneity and anisotropy on the propagation of seismic surface waves,” Mech. Adv. Mater. Struc., 27, No. 3, 177-188 (2020).

    Article  Google Scholar 

  3. J. Yang, An Introduction to the Theory of Piezoelectricity, Springer, New York (2005).

    Google Scholar 

  4. H. F. Tiersten, Linear Piezoelectric Plate Vibrations: Elements of the Linear Theory of Piezoelectricity and the Vibrations Piezoelectric Plates, Springer, New York (2013).

    Google Scholar 

  5. R. V. Southwell, “On the general theory of elastic stability,” Philos. Trans. Royal Soc. Ser. A, 213, 187-244 (1914).

    Google Scholar 

  6. C. B. Biezeno and H. Hencky, “On the general theory of elastic stability,” In: Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, 31, 569-592 (1928).

    Google Scholar 

  7. M. A. Biot, “Nonlinear elasticity theory and the linearized case for a body under initial stress,” Philos. Mag. Ser., 7, No. 27, 468-489 (1939).

    Article  Google Scholar 

  8. H. Neuber, “Die Grundgleichungen der elastischen Stabilität in allgemeinen Koordinaten und ihre Integration,” ZAMM, 23, 321-330 (1943).

    Article  Google Scholar 

  9. E. Trefftz, “Zur Theorie der Stabilität des elastischen Gleichgewichts,” ZAMM, 12, No. 2, 160–165 (1933).

    Article  Google Scholar 

  10. A. E. Green, R. S. Rivlin, and R. T. Shield, “General theory of small deformations superposed on large elastic deformations,” Proc. Roy. Soc. A, 211, 211–292 (1952).

    Google Scholar 

  11. A. N. Guz, “3D theory of elastic stability under finite subcritical deformations,” J. Appl. Mech., 8, No. 12, 25-44 (1972).

    Google Scholar 

  12. L. M. Zubov, “Theory of small deformations of prestressed thin shells,” J. Appl. Math. Mech., 40, No. 1, 73-82 (1976).

    Article  Google Scholar 

  13. H. F. Tiersten, “Perturbation theory for linear electroelastic equations for small fields superimposed on a bias,” J. Acoust. Soc. Am., 64, No. 3, 832-837 (1978).

    Article  Google Scholar 

  14. R. W. Ogden, Nonlinear Elastic Deformations, Ellis Horwood/Halsted Press, New York (1984).

    Google Scholar 

  15. S. D. Akbarov and A. N. Guz, Mechanics of Curved Composites, Kluwer Acad. Publ., Dordrecht-Boston-London (2000).

    Book  Google Scholar 

  16. J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press, Florida (2003).

  17. A. N. Guz, Fundamentals of the 3D Theory of Stability of Deformable Bodies, Springer, New York (1999).

    Google Scholar 

  18. S. D. Akbarov, Dynamics of Pre-Strained Bi-Material Elastic Systems: Linearized 3D Approach, Springer, New York (2015).

    Book  Google Scholar 

  19. S. D. Akbarov, A. Yildiz, and M. Eroz, “Forced vibration of the prestressed bi-layered plate-strip with finite length resting on a rigid foundation,” Appl. Math. Model., 35, No. 1, 250-256 (2011).

    Article  Google Scholar 

  20. S. Gupta, D. K. Majhi, S. Kundu, and S. K. Vishwakarma, “Propagation of torsional surface waves in a homogeneous layer of finite thickness over an initially stressed heterogeneous half-space,” Appl. Math. Comput., 218, No. 9, 5655-5664 (2012).

    Google Scholar 

  21. W. T. Hu and W. Y. Chen, “Influence of lateral initial pressure on axisymmetric wave propagation in hollow cylinder based on first power hypo-elastic model,” J. Cent. South Univ., 21, No. 2, 753-760 (2014).

    Article  CAS  Google Scholar 

  22. X. Guo and P. Wei, “Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with initial stresses,” Ultrasonics, 66, 72-85 (2016).

    Article  Google Scholar 

  23. U. B. Yesil, “Forced and natural vibrations of an orthotropic prestressed rectangular plate with neighboring two cylindrical cavities,” Comput. Mater. Continua., 53, No. 1, 1-22 (2017).

    Google Scholar 

  24. A. Dașdemir, “Forced vibrations of prestressed sandwich plate-strip with elastic layers and piezoelectric core,” Int. Appl. Mech., 54, No. 4, 480-493 (2018).

    Article  Google Scholar 

  25. A. Daşdemir, “Effect of imperfect bonding on the dynamic response of a prestressed sandwich plate-strip with elastic layers and a piezoelectric core,” Acta Mech. Solida Sin., 30, No. 6, 658-667 (2017).

    Article  Google Scholar 

  26. A. N. Guz, “Elastic waves in bodies with initial (residual) stresses,” Int. Appl. Mech., 38, No. 1, 23-59 (2002).

    Article  Google Scholar 

  27. S. D. Akbarov, “Recent investigations on dynamic problems for an elastic body with initial (residual) stresses,” Int. Appl. Mech., 43, No. 12, 1305-1324 (2007).

    Article  Google Scholar 

  28. S. D. Akbarov, Stability Loss and Buckling Delamination. Springer, Berlin (2012).

    Google Scholar 

  29. A. Daşdemir, “A mathematical model for forced vibration of prestressed piezoelectric plate-strip resting on rigid foundation,” Matematika: MJIAM, 34, No. 2, 419-431 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Daşdemir.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 58, No. 1, pp. 97-114, January-February, 2021. Russian DOI: 10.22364/mkm.58.1.06.

Appendix A

Appendix A

Depending on the case considered, the matrix \( \overset{\sim }{\mathbf{M}} \) of constitutive equations changes accordingly. Although our analysis is modal, the numerical results and discussions given here were presented for three different cases. The matrices \( \overset{\sim }{\mathbf{M}} \) for polarization in the directions of Ox1, Ox2, and Ox3 axes are

$$ \left[\begin{array}{ccc}\begin{array}{c}{c}_{33}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\mathit{\operatorname{sym}}\end{array}\end{array}\end{array}\end{array}& \begin{array}{c}{c}_{13}\\ {}{c}_{11}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{ccc}\begin{array}{c}{c}_{13}\\ {}{c}_{12}\\ {}\begin{array}{c}{c}_{11}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}{c}_{66}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{ccc}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}{c}_{44}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}{c}_{44}\\ {}\begin{array}{c}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{ccc}\begin{array}{c}{e}_{33}\\ {}{e}_{31}\\ {}\begin{array}{c}{e}_{31}\\ {}0\\ {}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}-{\gamma}_{33}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}{e}_{15}\\ {}\begin{array}{c}0\\ {}-{\gamma}_{11}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}{e}_{15}\\ {}0\\ {}\begin{array}{c}0\\ {}0\\ {}-{\gamma}_{11}\end{array}\end{array}\end{array}\end{array}\end{array}\end{array}\end{array}\end{array}\right], $$
$$ \left[\begin{array}{ccc}\begin{array}{c}{c}_{11}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\mathit{\operatorname{sym}}\end{array}\end{array}\end{array}\end{array}& \begin{array}{c}{c}_{13}\\ {}{c}_{33}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{ccc}\begin{array}{c}{c}_{12}\\ {}{c}_{13}\\ {}\begin{array}{c}{c}_{11}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}{c}_{44}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{ccc}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}{c}_{66}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}{c}_{44}\\ {}\begin{array}{c}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{ccc}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}-{\gamma}_{11}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{c}{e}_{31}\\ {}{e}_{33}\\ {}\begin{array}{c}{e}_{31}\\ {}0\\ {}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}-{\gamma}_{33}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}{e}_{15}\\ {}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}0\\ {}-{\gamma}_{11}\end{array}\end{array}\end{array}\end{array}\end{array}\end{array}\end{array}\end{array}\right], $$

and

$$ \left[\begin{array}{ccc}\begin{array}{c}{c}_{11}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\mathit{\operatorname{sym}}\end{array}\end{array}\end{array}\end{array}& \begin{array}{c}{c}_{12}\\ {}{c}_{22}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{ccc}\begin{array}{c}{c}_{13}\\ {}{c}_{13}\\ {}\begin{array}{c}{c}_{33}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}{c}_{44}\\ {}\begin{array}{c}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{ccc}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}{c}_{44}\\ {}\\ {}\begin{array}{c}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}{c}_{66}\\ {}\begin{array}{c}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{ccc}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}{e}_{15}\\ {}0\\ {}\begin{array}{c}-{\gamma}_{11}\\ {}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}{e}_{15}\\ {}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}-{\gamma}_{11}\\ {}\end{array}\end{array}\end{array}\end{array}& \begin{array}{c}{e}_{31}\\ {}{e}_{31}\\ {}\begin{array}{c}{e}_{33}\\ {}0\\ {}\begin{array}{c}0\\ {}0\\ {}\begin{array}{c}0\\ {}0\\ {}-{\gamma}_{33}\end{array}\end{array}\end{array}\end{array}\end{array}\end{array}\end{array}\end{array}\right], $$

respectively.

Acknowledgements. The author wishes to express deep thanks to the anonymous referees for their constructive comments and suggestions, which significantly improved the quality of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daşdemir, A. A Modal Analysis of Forced Vibration of a Piezoelectric Plate with Initial Stress by the Finite-Element Simulation. Mech Compos Mater 58, 69–80 (2022). https://doi.org/10.1007/s11029-022-10012-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-022-10012-7

Keywords

Navigation