Skip to main content

Advertisement

Log in

Simulating resilience of rainfed wheat–based cropping systems of Iran under future climate change

  • Original article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

Recognizing the climate change (CC) can have vast impacts on agricultural production has generated a desire to create resilience into cropping systems. Crop management is the most important strategy to improve crop yield and resilience under CC. This study investigated the adaptation (changing planting date and crop rotation) effects on rainfed wheat yield in Iran. A fallow-wheat rotation was simulated by the DSSAT model under the Representative Concentration Pathway (RCP)-4.5 and RCP-8.5 emission scenarios, for four time periods (1994–2018, 2032s (2020–2044), 2057s (2045–2069), and 2082s (2070–2094)) and an ensemble of five GCM models within the latest model based CMIP 5 for 16 representative sites within agro-climatic zones of the country. Results revealed that the magnitude and direction of CC impact and adaptation response varied spatially even within the agro-climatic zones. Under future CC, due to higher temperature and lower precipitation, wheat yield are projected to decrease depending on emission scenarios in all sites except Qorveh, Aligudarz, and Saqez. In general, greater rainfed wheat yield reduction is highly possible during the late twenty-first century and wheat yield will be more affected by CC under RCP-8.5. In the highlands of northwest Iran, rotation carryover effects and chickpea- and annual medic-wheat rotations can modulate the rainfed wheat yield response to CC, in 2032s and 2057s periods, with greater effects from annual medic. In lowland areas, replacing fallow with crop legumes was not sufficient to avoid wheat yield losses. When planting dates were adapted, wheat yield improved across a large number of locations under all wheat-based crop rotations. In general, crop rotation can be considered as an essential component of risk reduction strategies for CC adaptation and yield resilience especially in areas where crop rotations better represent predominant cropping systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Code availability

The software (DSSAT) applied is available on the DSSAT site (DSSAT.net—Official Home of the DSSAT Cropping Systems Model), and after registration of the fourth author, the latest version (4.7.5) of the model was downloaded and employed.

Notes

  1. The plant available water capacity was obtained as the difference between the soil water content at field capacity and the soil water content at the permanent wilting point.

References

  • Abdulahi A (2016) Effect of different crop rotations on grain yield and some agronomic traits of wheat (Triticum aestivum L.) in dryland conditions of Kermanshah. Iran J Agroecol 8(3):373–384

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith D (1998) Crop evapotranspiration. FAO Irrigation and Drainage Paper No. 56. FAO, Rome, Italy.

  • Angstrom AK (1924) Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Q J R Meteorol Soc 50:121–125. https://doi.org/10.1002/qj.49705021008

    Article  Google Scholar 

  • Angulo C, Rötter R, Lock R, Enders A, Fronzek S, Ewert F (2013) Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agric for Meteorol 170:32–46. https://doi.org/10.1016/j.agrformet.2012.11.017

    Article  Google Scholar 

  • Angus JF, Kirkegaard JA, Hunt JR, Ryan MH, Ohlander L, Peoples MB (2015) Break crops and rotations for wheat. Crop Pasture Sci 66(6):523–552. https://doi.org/10.1071/CP14252

    Article  Google Scholar 

  • Araghi A, Mousavi-Baygi M (2020) Variability in snowfall/total precipitation-day ratio in Iran. Theor Appl Climatol 140(1):547–558. https://doi.org/10.1007/s00704-020-03101-x

    Article  Google Scholar 

  • Araghi A, Martinez CJ, Adamowski J, Olesen JE (2019) Associations between large-scale climate oscillations and land surface phenology in Iran. Agric for Meteorol 278:107682. https://doi.org/10.1016/j.agrformet.2019.107682

    Article  Google Scholar 

  • Bannayan M, Rezaei EE (2014) Future production of rainfed wheat in Iran (Khorasan province): climate change scenario analysis. Mitig Adapt Strateg Glob Chang 19(2):211–227. https://doi.org/10.1007/s11027-012-9435-x

    Article  Google Scholar 

  • Bannayan M, Crout NMJ, Hoogenboom G (2003) Application of the CERES-wheat model for within – season prediction of wheat yield in United Kingdom. Agron J 95:114–125. https://doi.org/10.2134/agronj2003.1140a

    Article  Google Scholar 

  • Bannayan M, Paymard P, Ashraf B (2016) Vulnerability of maize production under future climate change: possible adaptation strategies. J Sci Food Agric 96:4465–4474. https://doi.org/10.1002/jsfa.7659

    Article  Google Scholar 

  • Bannayan M, Asadi S, Nouri M, Yaghoubi F (2020) Time trend analysis of some agroclimatic variables during the last half century over Iran. Theor Appl Climatol 140:839–857. https://doi.org/10.1007/s00704-020-03105-7

    Article  Google Scholar 

  • Battisti R, Sentelhas P, Parker P, Nendel C, Câmara G, Farias J, Basso C (2018) Assessment of crop-management strategies to improve soybean resilience to climate change in Southern Brazil. Crop Pasture Sci 69(2):154–162. https://doi.org/10.1071/CP17293

    Article  Google Scholar 

  • Bender FD, Sentelhas PC (2018) Solar radiation models and gridded databases to fill gaps in weather series and to project climate change in Brazil. Adv Meteorol 6204382.https://doi.org/10.1155/2018/6204382

  • Boody G, Vondracek B, Andow DA, Krinke M, Westra J, Zimmerman J, Welle P (2009) Multifunctional agriculture in the United States. Bioscience 55:27–38. https://doi.org/10.1641/0006-3568(2005)055[0027:MAITUS]2.0.CO;2

    Article  Google Scholar 

  • Boote KJ, Jones JW, Pickering NB (1996) Potential uses and limitations of crop models. Agron J 88(5):704–716. https://doi.org/10.2134/agronj1996.00021962008800050005x

    Article  Google Scholar 

  • Bowles TM, Mooshammer M, Socolar Y, Calderón F, Cavigelli MA, Culman SW, Deen W, Drury CF, y Garcia AG, Gaudin AC, Harkcom WS (2020) Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2(3):284–293. https://doi.org/10.1016/j.oneear.2020.02.007

    Article  Google Scholar 

  • Cann DJ, Hunt JR, Malcolm B (2020) Long fallows can maintain whole-farm profit and reduce risk in semi-arid south-eastern Australia. Agric Syst 178:102721. https://doi.org/10.1016/j.agsy.2019.102721

    Article  Google Scholar 

  • Chenu K (2015) Characterizing the crop environment-nature, significance and applications. In: Sadras V, Calderini D (eds) Crop physiology: applications for genetic improvement and agronomy. United Kingdom: Academic Press, London, pp 321–348. https://doi.org/10.1016/B978-0-12-417104-6.00013-3

  • Chipansky AC, Ripley EA, Lawford RG (1997) Early prediction of spring wheat yields in Saskatchewan from current and historical weather data using CERES-Wheat model. Agric for Meteorol 84:223–232. https://doi.org/10.1016/S0168-1923(96)02363-5

    Article  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58. https://doi.org/10.1038/nclimate1633

    Article  Google Scholar 

  • Deihimfard R, Eyni-Nargeseh H, Mokhtassi-Bidgoli A (2018) Effect of future climate change on wheat yield and water use efficiency under semi-arid conditions as predicted by APSIM-wheat model. Int J Plant Prod 12(2):115–125. https://doi.org/10.1007/s42106-018-0012-4

    Article  Google Scholar 

  • Deryng D, Sacks WJ, Barford CC, Ramankutty N (2011) Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochem Cycles 25:GB2006. https://doi.org/10.1029/2009gb003765

    Article  Google Scholar 

  • Diaz-Ambrona CH, Minguez MI (2001) Cereal-legume rotations in a Mediterranean environment: biomass and yield production. Field Crops Res 70:139–151. https://doi.org/10.1016/S0378-4290(01)00132-0

    Article  Google Scholar 

  • Evans JP (2009) 21st century climate change in the Middle East. Clim Chang 92:417–432. https://doi.org/10.1007/s10584-008-9438-5

    Article  Google Scholar 

  • Ewert F, Rötter RP, Bindi M, Webber H, Trnka M, Kersebaum KC, Olesen JE, van Ittersum MK, Janssen S, Rivington M, Semenov MA, Wallach D, Porter JR, Stewart D, Verhagen J, Gaiser T, Palosuo T, Tao F, Nendel C, Roggero PP, Bartošová L, Asseng S (2015) Crop modelling for integrated assessment of risk to food production from climate change. Environ Model Softw 287–303 https://doi.org/10.1016/j.envsoft.2014.12.003

  • Eyshi Rezaei E, Bannayan M (2012) Rainfed wheat yields under climate change in northeastern Iran. Meteorol Appl 19(3):346–354. https://doi.org/10.1002/met.268

    Article  Google Scholar 

  • Falkenmark M (2013) Adapting to climate change: towards societal water securityin dry-climate countries. Int J Water Resour Dev 29:123–136. https://doi.org/10.1080/07900627.2012.721714

    Article  Google Scholar 

  • Fallah, M.H., 2019. Agroecological zoning and yield gap assessment of rainfed and irrigated wheat in Iran. Dissertation, Ferdowsi University of Mashhad, Iran. (in Persian)

  • Fallah-Ghalhari Q, Shakeri F (2016) Calibration of Angstrom-Prescott coefficients for selected stations of khorasan-e razavi province. Iran J Water Soil Sci 26(3–2):229

    Google Scholar 

  • Fasihi Kh, Tahmasebi Sarvestani Z, AghAlikhani M, Modarres-Sanavi A (2007) Effects of annual medic Green manure and biofertilizer on dryland winter wheat (Triricum aestivum L.) yield in Ilam. Iran J Agric Sci Nat Res 13(2):135–124

    Google Scholar 

  • Fletcher AL, Brown HE, Johnstone PR, de Ruiter JM, Zyskowski RF (2011) Making sense of yield trade-offs in a crop sequence: a New Zealand case study. Field Crops Res 124:149–156. https://doi.org/10.1016/j.fcr.2011.01.007

    Article  Google Scholar 

  • Galtier F (2013) Managing food price instability: Critical assessment of the dominant doctrine. Glob Food Sec 2:72–81. https://doi.org/10.1016/j.gfs.2013.02.001

    Article  Google Scholar 

  • Global Yield Gap Atlas (2018) Methods used in the Global Yield Gap Atlas. http://www.yieldgap.org/web/guest/methods-overview. Accessed 2 December 2018

  • Hajishabani H, Mondani F, Bagheri A (2020) Simulation effects of sowing data on growth and yield on rainfed chickpea (Cicer arientinum L.) by CROPGRO-Chickpea model. Iran J Field Crops Res 18(2):197–212

    Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99. https://doi.org/10.13031/2013.26773

    Article  Google Scholar 

  • Harris HC (1995) Long-term trials on soil and crop management at ICARDA. Adv Soil Sci 19:447–469

    Google Scholar 

  • Hoogenboom G, Jones JW, Wilkens PW, Porter CH, Boote KJ, Hunt LA, Singh U, Lizaso JI, White JW, Uryasev O, Ogoshi R, Koo J, Shelia V, Tsuji GY (2014) Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.6 (www.DSSAT.net). DSSAT Foundation Prosser, Washington

  • Hunt LA, Pararajasingham S, Jones JW, Hoogenboom G, Imamura DT, Ogoshi RM (1993) GENCALC: Software to facilitate the use of crop models for analyzing field experiments. Agron J 85(5):1090–1094. https://doi.org/10.2134/agronj1993.00021962008500050025x

    Article  Google Scholar 

  • Iranian Ministry of Agriculture, 2019. Statistics of agricultural products in 2017–2018. http://www.maj.ir. Accessed 3 March 2019

  • Jones PG, Thornton PK (2013) Generating downscaled weather data from a suiteof climate models for agricultural modelling applications. Agric Syst 114:1–5. https://doi.org/10.1016/j.agsy.2012.08.002

    Article  Google Scholar 

  • Karlen DL, Varvel GE, Bullock DG, Cruse RM (1994) Crop rotations for the 21st century. Adv Agron 53:1–45. https://doi.org/10.1016/S0065-2113(08)60611-2

    Article  Google Scholar 

  • Khalili A, sadr Rezai-e H (1997) Estimation of global solar radiation over Iran based on climatical data. Iran J Geograph Res 46:15–35

    Google Scholar 

  • Kollas C, Kersebaum KC, Nendel C, Manevski K, Müller C, Palosuo T, Armas-Herrera CM, Beaudoin N, Bindi M, Charfeddine M, Conradt T, Constantin J, Eitzinger J, Ewert F, Ferrise R, Gaiser T, de Cortazar-Atauri IG, Giglio L, Hlavinka P, Hoffmann H, Hoffmann MP, Launay M, Manderscheid R, Mary B, Mirschel W, Moriondo M, Olesen JE, Öztürk I, Pacholski A, Ripoche-Wachter D, Roggero PP, Roncossek S, Rötter RP, Ruget F, Sharif B, Trnka M, Ventrella D, Waha K, Wegehenkel M, Weigel H-J, Wu L (2015) Crop rotation modelling—a European model intercomparison. Eur J Agron 70:98–111. https://doi.org/10.1016/j.eja.2015.06.007

    Article  Google Scholar 

  • Lar N, Arunrat N, Tint S, Pumijumnong N (2018) Assessment of the potential climate change on rice yield in Lower Ayeyarwady Delta of Myanmar using EPIC model. Environ Nat Resour J 16(2):45–57. https://doi.org/10.14456/ennrj.2018.14

    Article  Google Scholar 

  • Licker R, Johnston M, Foley JA, Barford C, Kucharik CJ, Monfreda C, Ramankutty N (2010) Mind the gap: how do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Glob Ecol Biogeogr 19:769–782. https://doi.org/10.1111/j.1466-8238.2010.00563.x

    Article  Google Scholar 

  • Lin BB (2011) Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61(3):183–193. https://doi.org/10.1525/bio.2011.61.3.4

    Article  Google Scholar 

  • López-Bellido RJ, López-Bellido L, Benítez-Vega J, Muñoz-Romero V, López-Bellido FJ, Redondo R (2011) Chickpea and faba bean nitrogen fixation in a Mediterranean rainfed Vertisol: Effect of the tillage system. Eur J Agron 34(4):222–230. https://doi.org/10.1016/j.eja.2011.01.005

    Article  Google Scholar 

  • Mäkinen H, Kaseva J, Virkajärvi P, Kahiluoto H (2015) Managing resilience of forage crops to climate change through response diversity. Field Crops Res 183:23–30. https://doi.org/10.1016/j.fcr.2015.07.006

    Article  Google Scholar 

  • Martin G, Durand JL, Duru M, Gastal F, Julier B, Litrico I, Louarn G, Mediene S, Moreau D, Valentin-Morison M, Novak S, Parnaudeau V, Paschalidou F, Vertes F, Voisin AS, Cellier P, Jeuffroy MH (2020) Role of ley pastures in tomorrow’s cropping systems. A Review Agron Sustain Dev 40:1–25. https://doi.org/10.1007/s13593-020-00620-9

    Article  Google Scholar 

  • Metzger MJ, Bunce RG, Jongman RH, Sayre R, Trabucco A, Zomer R (2012) A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Glob Ecol Biogeogr 22(5):630–638. https://doi.org/10.1111/geb.12022

    Article  Google Scholar 

  • Moini S, Javadi S, Dehghan Manshadi M (2011) Feasibility study of solar energy in iran and preparing radiation atlas. Recent Advances in Environment, Energy Systems and Naval Science 1–7.‏

  • Mu JE, Sleeter BM, Abatzoglou JT, Antle JM (2017) Climate impacts on agricultural land use in the USA: the role of socio-economic scenarios. Clim Chang 144:329–345. https://doi.org/10.1007/s10584-017-2033-x

    Article  Google Scholar 

  • Muchow RC, Hammer GL, Vanderlip RL (1994) Assessing climatic risk to sorghum production in water-limited subtropical environments II Effects of planting date, soil water at planting, and cultivar phenology. Field Crops Res 36(3):235–246. https://doi.org/10.1016/0378-4290(94)90115-5

    Article  Google Scholar 

  • Nazir SF, Singh L, Shah BA, Ali ORI (2020) Rice-wheat cropping system under changing climate scenario: a review. Int J Chem Stud 8(2):1907–1914. https://doi.org/10.22271/chemi.2020.v8.i2ac.9036

    Article  Google Scholar 

  • Nezami A, Bagheri R, Azim-Zadeh M, Mahmoudi A, Bozorgmehr A (2013) Evaluation of legumes as substituting crops for fallow in wheat-based rotation on North Khorasan Province. Iran J Pulses Res 4(1):21–30

    Google Scholar 

  • Nouri M, Homaee M, Bybordi M (2014) Quantitative assessment of LNAPLretention in soil porous media. Soil Sedim Contam 23:801–819. https://doi.org/10.1080/15320383.2014.887650

    Article  Google Scholar 

  • Nouri M, Homaee M, Bannayan M, Hoogenboom G (2016) Towards modeling soil texture-specific sensitivity of wheat yield and water balance to climatic changes. Agric Water Manage 177:248–263. https://doi.org/10.1016/j.agwat.2016.07.025

    Article  Google Scholar 

  • Nouri M, Homaee M, Bannayan M, Hoogenboom G (2017) Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change. Agric Water Manag 186:108–119. https://doi.org/10.1016/j.agwat.2017.03.004

    Article  Google Scholar 

  • Paymard P, Yaghoubi F, Nouri M, Bannayan M (2019) Projecting climate change impacts on rainfed wheat yield, water demand, and water use efficiency in northeast Iran. Theor Appl Climatol 138:1361–1373. https://doi.org/10.1007/s00704-019-02896-8

    Article  Google Scholar 

  • Peterson CA, Eviner VT, Gaudin ACM (2018) Ways forward for resilience research in agroecosystems. Agric Syst 162:19–27. https://doi.org/10.1016/j.agsy.2018.01.011

    Article  Google Scholar 

  • Pilbeam CJ, Wood M, Harris HC, Tuladhar J (1998) Productivity and nitrogen use of three different wheat-based rotations in North West Syria. Aust J Agric Res 49:451–458. https://doi.org/10.1071/A97015

    Article  Google Scholar 

  • Prescott J (1940) Evaporation from a water surface in relation to solar radiation. Trans R Soc S Aust 64(1):114–118

    Google Scholar 

  • Quiring SM, Legates DR (2008) Application of CERES-Maize for within-season prediction of rainfed corn yields in Delaware, USA. Agric for Meteorol 148:964–975. https://doi.org/10.1016/j.agrformet.2008.01.009

    Article  Google Scholar 

  • Ray DK, Gerber JS, MacDonald GK, West PC (2015) Climate variation explains a third of global crop yield variability. Nat Commun 6:5989. https://doi.org/10.1038/ncomms6989

    Article  Google Scholar 

  • Renard D, Tilman D (2019) National food production stabilized by crop diversity. Nature 571:257–260. https://doi.org/10.1038/s41586-019-1316-y

    Article  Google Scholar 

  • Richardson CW (1981) Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour Res 17:182–190. https://doi.org/10.1029/WR017i001p00182

    Article  Google Scholar 

  • Rinaldi M (2004) Water availability at sowing and nitrogen management of durum wheat: a seasonal analysis with the CERES-Wheat model. Field Crops Res 89:27–37. https://doi.org/10.1016/j.fcr.2004.01.024

    Article  Google Scholar 

  • Ritchie JT, Singh U, Godwin D, Bowen WT (1998) Cereal growth, development and yield. In: Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding options for agricultural production. Kluwer Acad., Dordrecht, the Netherlands, pp. 79–98. https://doi.org/10.1007/978-94-017-3624-4_5

  • Rockström J (2003) Water for food and nature in drought-prone tropics: vapour shift in rain-fed agriculture. Philos Trans R Soc Lond B Biol Sci 358:1997–2009. https://doi.org/10.1098/rstb.2003.1400

    Article  Google Scholar 

  • Roostaei M, Sadeghzadeh Ahari D, Hasanpoor Hasani M, Amiri A, Haghparast A, Hesami A, Soleimani K, Banisadr N, Pashapoor H, Azimzadeh SM, Torabi M, Ghaffari A, Abedi Asl Gh, Nader Mahmoodi K (2000) Introduction of new bread wheat cultivar, Azar 2. Seed Plant Prod J 16(2):263–266

    Google Scholar 

  • Roozitalab MH, Serghini H, Keshavarz A, Eser V, de-Pauw E (2013) Elements of research strategy and priorities for sustainable agricultural development of highlands in Central. West Asia and North Africa, ICARDA

  • Roozitalab MH, Toomanian N, Dehkordi VRG, Khormali F (2018) Major soils, properties, and classification. In: Roozitalab MH, Siadat H, Farshad A (eds) The soils of Iran, Springer, Cham, pp. 93–147. https://doi.org/10.1007/978-3-319-69048-3_7

  • Rötter RP, Höhn J, Trnka M, Fronzek S, Carter TR, Kahiluoto H (2013) Modelling shifts in agroclimate and crop cultivar response under climate change. Ecol Evol 3:4197–4214. https://doi.org/10.1002/ece3.782

    Article  Google Scholar 

  • Sabbaghpour SH (2015) Arman chickpea cultivar suitable for rainfed cultivation. Agricultural Education and Extension Organization, Tehran, Iran. (in Persian)

  • Sabziparvar AA, Tabari H (2010) Regional estimation of reference evapotranspiration in arid and semi-arid regions. Irrig Drain 136(10):724–731. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000242

    Article  Google Scholar 

  • Sadeghi H, Ghanbarian Gh, Rasouli M (2013) Investigation of adaptation and determination of some quantitative and qualitative characteristics of three annual rangeland medics as affected by seed rate and seed pod under dryland conditions. Iran J Field Crop Sci 43(4):673–679

    Google Scholar 

  • Sampaio G, da Silva Dias PL (2014) Evoluço dos modelos clim´aticos e de previso de tempo e clima, Revista USP, vol. 103.

  • Sentelhas PC, Gillespie TJ, Santos EA (2010) Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario. Canada Agric Water Manag 97(5):635–644. https://doi.org/10.1016/j.agwat.2009.12.001

    Article  Google Scholar 

  • Shabani G, Azizi Kh, Chaichi MR, Amini Dehaghi M, Ghalavand A (2005) Effects of harvest time on biological yield and soil seed bank reserves of annual medic cultivars in dry farming. Pajouhesh & Sazandegi 66:39–49

    Google Scholar 

  • Steduto P, Hsiao TC, Raes D, Fereres E (2009) AquaCrop–the FAO crop model tosimulate yield response to water: I. Concepts and underlying principles. Agron J 101:426–437

    Article  Google Scholar 

  • Suleimenov M, Kiyas A, Kaskarbayev Z (2010) Replacement of summer fallow with oats and food legumes on black soils of northern Kazakhstan. Asian Australas J Plant Sci Biotechnol 4(1):81–86

    Google Scholar 

  • Tahmasebi-Fard N, Azizi, Kh, Ismaili A, Fiezian M (2018) Investigation of morphological characteristics of annual alfalfa with emphasis on agrotechnical points of annual medic (Robinson cultivar). 3rd National Conference on Knowledge and Technology of Agricultural Sciences, Natural Resources and Environment, 13 July 2018, Tehran, Iran. (in Persian)

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans A Math Phys Eng Sci 365(1857):2053–2075. https://doi.org/10.1098/rsta.2007.2076

    Article  Google Scholar 

  • Teixeira EI, Brown HEHE, Sharp J, Meenken EDED, Ewert F (2015) Evaluating methods to simulate crop rotations for climate impact assessments — a case study on the Canterbury plains of New Zealand. Environ Model Softw 72:304–313. https://doi.org/10.1016/j.envsoft.2015.05.012

    Article  Google Scholar 

  • Teixeira EI, Johnstone P, Chakwizira E, de Ruiter J, Malcolm B, Shaw N, Zyskowski R, Khaembah E, Sharp J, Meenken E, Fraser P, Thomas S, Brown H, Curtin D (2016) Sources of variability in the effectiveness of winter cover crops for mitigating N leaching. Agric Ecosyst Environ 220:226–235. https://doi.org/10.1016/j.agee.2016.01.019

    Article  Google Scholar 

  • Teixeira EI, de Ruiter J, Ausseil AG, Daigneault A, Johnstone P, Holmes A, Tait A, Ewert F (2018) Adapting crop rotations to climate change in regional impact modelling assessments. Sci Total Environ 616:785–795. https://doi.org/10.1016/j.scitotenv.2017.10.247

    Article  Google Scholar 

  • Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE (2011) RCP4.5: a pathway forstabilization of radiative forcing by 2100. Climat Chang 109:77–94. https://doi.org/10.1007/s10584-011-0151-4

    Article  Google Scholar 

  • Tiemann LK, Grandy AS, Atkinson EE, Marin-Spiotta E, McDaniel MD (2015) Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol Lett 18:761–771. https://doi.org/10.1111/ele.12453

    Article  Google Scholar 

  • Trnka M, Olesen JE, Kersebaum KC, Skjelvåg AO, Eitzinger J, Seguin B, Peltonen-Sainio P, Orlandini S, Dubrovsky M, Hlavinka P, Balek J, Eckersten H, Cloppet E, Calanca P, Rötter R, Gobin A, Vucetic V, Nejedlik P, Kumar S, Lalic B, Mestre A, Rossi F, Alexandrov V, Kozyra J, Schaap B, Zalud Z (2011) Agroclimatic conditions in Europe under climate change. Glob Chang Biol 17:2298–2318. https://doi.org/10.1111/j.1365-2486.2011.02396.x

    Article  Google Scholar 

  • Turral H, Burke JJ, Faurès J-M (2011) Climate change, water and food security. FAO Water Reports 36. FAO, Rome.

  • Walley FL, Clayton GW, Miller PR, Carr PM, Lafond GP (2007) Nitrogen economy of pulse crop production in the Northern Great Plains. Agron J 99:1710–1718. https://doi.org/10.2134/agronj2006.0314s

    Article  Google Scholar 

  • Walter IA, Allen RG, Elliott R, Mecham B, Jensen ME, Itenfisu D, Howell TA, Snyder R, Brown P, Echings S, Spofford T, Hattendorf M, Cuenca RH, Right JL, Martin D (2000) ASCE standardized reference evapotranspiration equation. In: Evans RG, Benham BL, Trooien TP (eds) Proceedings of the National Irrigation Symposium, ASAE, Nov. 14–16, Phoenix, AZ, pp 209–215

  • Wart Jv, Bussel LGJ, Wolf J, Licker R, Grassini P, Nelson A, Boogaard HL, Gerber J, Mueller ND, Claessens LFG, Ittersum MK, Cassman KG (2013) Use of agro-climatic zones to upscale simulated crop yield potential. Field Crops Res 143:44–55. https://doi.org/10.1016/j.fcr.2012.11.023

  • White JW, Kimball BA, Wall GW, Hoogenboom G, Kimball BA, Wall GW (2011) Methodologies for simulating impacts of climate change on crop production. Field Crops Res 124:357–368. https://doi.org/10.1016/j.fcr.2011.07.001

    Article  Google Scholar 

  • Zhao G, Hoffmann H, Yeluripati J, Xenia S, Nendel C, Coucheney E, Kuhnert M, Tao F, Constantin J, Raynal H, Teixeira E, Grosz B, Doro L, Kiese R, Eckersten H, Haas E, Cammarano D, Kassie B, Moriondo M, Trombi G, Bindi M, Biernath C, Heinlein F, Klein C, Priesack E, Lewan E, Kersebaum KC, Rötter R, Roggero PP, Wallach D, Asseng S, Siebert S, Gaiser T, Ewert F (2016) Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops. Environ Model Softw 80:100–112. https://doi.org/10.1016/j.envsoft.2016.02.022

    Article  Google Scholar 

  • Zheng Z, Cai H, Yu L, Hoogenboom G (2017) Application of the CSM–CERES–Wheat model for yield prediction and planting date evaluation at Guanzhong Plain in Northwest China. Agron J 109(1):204–217. https://doi.org/10.2134/agronj2016.05.0289

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ferdowsi University of Mashhad, Iran (grant number 49106, 2019).

Author information

Authors and Affiliations

Authors

Contributions

The authors of this research paper have directly participated in the planning, execution, or analysis of this study. The authors read and approved the final edition of the manuscript.

Corresponding author

Correspondence to A. Koocheki.

Ethics declarations

Ethics approval

This research meets all the ethical guidelines, including adherence to the legal requirements of my country.

Consent to participate

The authors voluntarily agree to participate in this research study.

Consent for publication

The authors agree with the submission of the manuscript to your journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1053 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koocheki, A., Mahallati, M.N., Bannayan, M. et al. Simulating resilience of rainfed wheat–based cropping systems of Iran under future climate change. Mitig Adapt Strateg Glob Change 27, 27 (2022). https://doi.org/10.1007/s11027-022-09996-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11027-022-09996-3

Keywords

Navigation