Skip to main content

Advertisement

Log in

Assessment of future climate change impact on rainfed wheat yield in the semi-arid Eastern High Plain of Algeria using a crop model

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Maintaining sustainability in rainfed wheat production under changing climate is a grave concern for food security in Algeria. This study aims to assess the impact of future climate change on rainfed wheat yield in the semiarid Eastern High Plains (Setif and Bordj Bou Arreridj (BBA)) in Algeria using AquaCrop model. For this purpose, the EURO-CORDEX climate projections by 2035–2064 and 2065–2094 were downscaled using ICHEC_KNMI model under two representative concentration pathway (RCP) scenarios RCP 4.5 and RCP 8.5. The crop model predicted wheat yield increase by 82–95% and 77–118% at Setif and by 8–16% and 133–135% at BBA under the RCP 4.5 (2035–64 and 2065–94) and RCP 8.5 (2035–64 and 2065–94) scenarios, respectively, compared to the yield of the baseline period of 1981–2010. Future yield improvement is due to the fertilizing effect of the elevated carbon dioxide (CO2) concentration in the atmosphere, which offsets the negative impacts of rising temperature, decreasing precipitations and the net solar radiation. The expected increase in yield is much higher under RCP 8.5 compared to RCP 4.5 because CO2 concentration is higher under RCP 8.5. The model predicted an increase in wheat water productivity because of the expected decrease in evapotranspiration losses. To adapt rainfed wheat to future climate change in the study area, early sowing in mid-October provides better yields because it allows the wheat crop to take more benefits from increased precipitation during the vegetative development stage and to avoid the spring warming temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abedinpour M, Sarangi A, Rajput TBS, Singh M, Pathakc H, Ahmad T (2014) Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric Water Manag 110:55–66. https://doi.org/10.1017/s0021859614000094

    Article  Google Scholar 

  • Acharjee TK, Ludwig F, van Halsema G, Hellegers P, Iwan S (2017) Future changes in water requirements of Boro rice in the face of climate change in North–West Bangladesh. Agric Water Manag 194:172–183. https://doi.org/10.1016/j.agwat.2017.09.008

    Article  Google Scholar 

  • Addor N, Rohrer M, Furrer R, Seibert J (2016) Propagation of biases in climate models from the synoptic to the regional scale: implications for bias adjustment. J Geophys Res Atmos 121:2075–2089. https://doi.org/10.1002/2015JD024040

    Article  Google Scholar 

  • Admassu H, Getinet M, Timothy ST, Waithaka M, Kyotalimye M (2012) East African Agriculture and climate change: a comprehensive analysis—Ethiopia. Project note. International Food Policy Research Institute (IFPRI), Addis Ababa, Ethiopia

  • Ahmad MJ, Choi KS, Cho GH, Kim SH (2019) Future wheat yield variability and water footprints based on the yield sensitivity to past climate conditions. Agron J 9(11):744. https://doi.org/10.3390/agronomy9110744

    Article  Google Scholar 

  • Ahmad MJ, Cho GH, Kim SH, Lee S, Adelodun B, Choi KS (2020) Influence mechanism of climate change over crop growth and water demands for wheat-rice system of Punjab. J Water Clim Change, Pakistan. https://doi.org/10.2166/wcc.2020.009

    Book  Google Scholar 

  • Ainsworth EA, Rogers A, Nelson R, Long SP (2004) Testing the ‘source-sink’ hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agric For Meteorol 122:85–94. https://doi.org/10.1016/j.agrformet.2003.09.002

    Article  Google Scholar 

  • Allam A, Moussa R, Najem W, Bocquillon C (2020) Specific climate classification for Mediterranean hydrology and future evolution under Med-CORDEX regional climate model scenarios. Hydrol Earth Syst Sci 24:4503–4521. https://doi.org/10.5194/hess-24-4503-2020

    Article  Google Scholar 

  • Amiri E (2016) Calibration and testing of the AquaCrop model for rice under water and nitrogen management. Commun Soil Sci Plan 47(3):387–403. https://doi.org/10.1080/00103624.2015.1123719

    Article  Google Scholar 

  • Arbadi R, Bacciu V, Benkheira A, Bouazzaoui A, Bouzid BW, Brachemi O et al (2018) Réduction d’échelle et modélisation climatique avec une application a la gestion des forets en Algérie. Climat South, Technical Paper 4. p 56

  • Attri SD, Rathore LS (2003) Simulation of impact of projected climate change on wheat in India. Int J Climatol 23(6):693–705. https://doi.org/10.1002/joc.896

    Article  Google Scholar 

  • Bannayan M, Lotfabadi S, Sanjani S, Mohammadian A, Agaalikhani M (2011) Effects of precipitation and temperature on cereal yield variability in northeast of Iran. Int J Biometeorol 55:387–440. https://doi.org/10.1007/s00484-010-0348-7

    Article  Google Scholar 

  • Beheydt D, Boeckx P, Sleutel S, Li C, Cleemput OV (2007) Validation of DNDC for 22 long-term N2O field emission measurements. Atmos Environ 41:6196–6211. https://doi.org/10.1016/j.atmosenv.2007.04.003

    Article  Google Scholar 

  • Benabdelouahab T, Lionboui H, Hadria R, Balaghi R, Boudhar A, Abdelghani S, Tychon B (2018) Chapter 8. Support irrigation water management of cereals using optical remote sensing and modeling in Semi-arid regions. In: El-Ayachi M, El Mansouri L (eds) Geospatial technologies for effective land governance. Edition Institut Agronomique et Vétérinaire Hassan II, Morocco, p 302. https://doi.org/10.4018/978-1-5225-5939-9

    Chapter  Google Scholar 

  • Bensemane L, Bouzerzour H, Benmahammed A, Mimouni H (2011) Assessment of the phenotypic variation within two- and six rowed barley (Hordeumvulgare L.) breeding lines under semiarid condition. Adv Environ Biol 5:1454–1460

    Google Scholar 

  • Bouras E, Jarlan L, Khabba S, Er-Raki S, Dezetter A, Sghir F, Tramblay Y (2019) Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Sci Rep UK. https://doi.org/10.1038/s41598-019-55251-2

    Article  Google Scholar 

  • Bouzerzour H, Oudina M (1989) Association de certains caractères morphologiques au rendement grain chez le blé dur (Triticum durum Desf.) en conditions semi-arides. Ann Inst Nat Agron El Harrach 13(1):157–167

    Google Scholar 

  • Brouziyne Y, Abouabdillah A, Hirich A, Bouabid R, Zaaboul R, Benaabidate L (2018) Modeling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change scenarios. Agric Syst 162:154–163. https://doi.org/10.1016/j.agsy.2018.01.024

    Article  Google Scholar 

  • Cammarano D, Payero J, Basso B, Stefanova L, Grace P (2012) Adapting wheat sowing dates to projected climate change in the Australian subtropics: analysis of crop water use and yield. Crop Pasture Sci 63:974–986. https://doi.org/10.1071/CP11324

    Article  Google Scholar 

  • Celik SK, Madenoglu S, Sonmez B (2018) Evaluating AquaCrop model for winter wheat under various irrigation conditions in Turkey. J Agric Sci 24:205–217. https://doi.org/10.15832/ankutbd.446438

    Article  Google Scholar 

  • Chen J, Brissette FP, Leconte R (2011) Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J Hydrol 401(3–4):190–202. https://doi.org/10.1016/j.jhydrol.2011.02.020

    Article  Google Scholar 

  • Chen C, Baethgen WE, Robertson A (2012) Contributions of individual variation in temperature, solar radiation and precipitation to crop yield in the North China Plain, 1961–2003. Clim Change 116(3–4):767–788. https://doi.org/10.1007/s10584-

    Article  Google Scholar 

  • Choudhary D (2018) Crop growth simulation mode. Book, ANAND Agricultural University, p 22. https://doi.org/10.13140/RG.2.2.35505.28008

  • Chourghal N, Lhomme JP, Huard F, Aidaoui A (2015) Climate change in Algeria and its impact on durum wheat. Reg Environ Change 16:1623–1634. https://doi.org/10.1007/s10113-015-0889

    Article  Google Scholar 

  • Curtis BC (2002) Wheat in the world. In: Curtis BC, Rajaram S, Gómez Macpherson H (eds) Bread wheat. Publishing and Multimedia Service, Information Division, FAO, Rome, p 554

    Google Scholar 

  • Deryng D, Elliott J, Folberth C, Müller C et al (2016) Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nat Clim Change 6:786–790. https://doi.org/10.1038/nclimate2995

    Article  Google Scholar 

  • Erbs M, Manderscheid R, Jansen G, Seddig S, Pacholski A, Weigel HJ (2010) Effects of free-air CO2 enrichment and nitrogen supply on grain quality parameters and elemental composition of wheat and barley grown in a crop rotation. Agric Ecosyst Environ 136(1–2):59–68. https://doi.org/10.1016/j.agee.2009.11.009

    Article  Google Scholar 

  • FAO (1996) Global climate change and agricultural production. In: Abrol YP, Ingram K (eds) Chapter 6: Direct and indirect effects of changing hydrological, pedological and plant physiological processes. Chapter 6: Effects of higher day and night temperatures on growth and yields of some crop plants. FAO. Rome. Italy

  • FAO (2018) The state of agricultural commodity markets 2018. Agricultural trade, climate change and food security, Rome, Italy

  • FAO and OECD (2018) Food security and nutrition: challenges for agriculture and the hidden potential of soil. A report to the G20 agriculture deputies prepared by the Food and Agriculture Organization of the United Nations (FAO) and the Organization of Economic Co-Operation and Development (OECD), p 33

  • Freidenreich SM, Ramaswamy V (2011) Analysis of the biases in the downward shortwave surface flux in the GFDL CM2.1 general circulation model. J Geophys Res. https://doi.org/10.1029/2010JD014930

    Article  Google Scholar 

  • Gaitán CF (2016) Effects of variance adjustment techniques and time-invariant transfer functions on heat wave duration indices and other metrics derived from downscaled time-series. Study case: Montreal, Canada. Nat Hazards 83:1661–1681. https://doi.org/10.1007/s11069-016-2381-2

    Article  Google Scholar 

  • Gharibdousti SR, Kharel G, Miller RB, Linde E, Stoecker A (2019) Projected climate could increase water yield and cotton yield but decrease winter wheat and sorghum yield in an agricultural watershed in Oklahoma. Water-Sui 11(1):105. https://doi.org/10.3390/w11010105

    Article  Google Scholar 

  • Ghulami M (2017) Assessment of climate change impacts on water resources and agriculture in data scarce Kabul basin, Afghanistan. Other. Université Côte d’Azur; Asian institute of technology, ffNNT: 2017AZUR4135ff. fftel-01737052f

  • Gray CD, Kinnear PR (2012) IBM SPSS statistics 19 made simple. Psychology Press, New York, p 688

    Book  Google Scholar 

  • Hernandez-Ochoa IM, Asseng S, Kassie BT, Xiong W, Robertson R, Luz Pequeno DN et al (2018) Climate change impact on Mexico wheat production. Agric For Meteorol 263:373–387. https://doi.org/10.1016/j.agrformet.2018.09.008

    Article  Google Scholar 

  • Hsiao TC, Heng L, Steduto P, Rojas-Lara B, Raes D, Fereres E (2009) AquaCrop—the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron J 101(3):448–459. https://doi.org/10.2134/agronj2008.0218s

    Article  Google Scholar 

  • Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22(4):679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001

    Article  Google Scholar 

  • IPCC (2014) Impacts, adaptation, and vulnerability. The assessment of impacts, adaptation, and vulnerability in the Working Group II contribution to the IPCC’s Fifth Assessment Report (WGII AR5)

  • Iqbal MA, Shen Y, Stricevic R, Pei H, Sun H, Amiri E et al (2014) Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agric Water Manag 135:61–72. https://doi.org/10.1016/j.agwat.2013.12.012

    Article  Google Scholar 

  • Jones C, Giorgi F, Asrar G (2011) The coordinated regional downscaling experiment CORDEX, an international downscaling link to CMIP5. CLIVAR Exchanges 16(2):34–40

    Google Scholar 

  • Kaly E, Malou R, Akpo LE (2016) Évaluation du modèle AquaCrop de la FAO en rizicultur irriguée dans le Delta du Fleuve Sénégal. J Anim Plant Sci 30:4781–4796

    Google Scholar 

  • Karimi T, Stöckle CO, Higgins S, Nelson R (2018) Climate change and dryland wheat systems in the US Pacific Northwest. Agric Syst 159:144–156. https://doi.org/10.1016/j.agsy.2017.03.014

    Article  Google Scholar 

  • Kourat T (2015) Analyse et cartographie des pluies et l’incidence de leurs variabilite spatio-temporelle sur la délimitation des zones céréalières dans les hautes plaines orientales de l’Algérie. Magister thesis. Earth Sciences Faculty. Université des Sciences et de la Technologie Houari Boumediene. Algiers, Algeria, p 164

  • Kourat T, Medjerrab A (2016) Analyse et cartographie des pluies et l’incidence de leurs variabilité spatio-temporelle sur la délimitation des zones céréalières dans les hautes plaines orientales de l’Algérie. Révue Agric Numéro Spécial 1:220–229

    Google Scholar 

  • Larbi A, Meklich EA, Abed R, Badis M (2000) Effet du déficit hydrique sur la production de deux variétés de blé dur (Triticum turgidum L. var. durum) en région semi-aride. Options Méditerranéennes: Série A. Séminaires Méditerranéens 40:295–297. CIHEAM Zaragoza

  • Lawin AE, Hounguè R, N’Tcha M’Po Y, Hounguè NR, Attogouinon A, Afouda AA (2019) Mid-century climate change impacts on Ouémé River discharge at Bonou Outlet (Benin). Hydrology 6(3):72. https://doi.org/10.3390/hydrology6030072

    Article  Google Scholar 

  • Li M, Zhang F, Barnes S, Wang X (2020) Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland. Nat Hazards 103:2561–2588. https://doi.org/10.1007/s11069-020-04096-4

    Article  Google Scholar 

  • Liu H, Li Y, Josef T, Zhang R, Huang G (2013) Quantitative estimation of climate change effects on potential evapotranspiration in Beijing during 1951–2010. J Geogr Sci 24(1):93–112. https://doi.org/10.1007/s11442-014-1075-5

    Article  Google Scholar 

  • Liu DL, Wang B, Evans J, Ji F, Waters C, Macadam I, Yang X, Beyer K (2018) Propagation of climate model biases to biophysical modeling can complicate assessments of climate change impact in agricultural systems. Int J Climatol 39(1):424–444. https://doi.org/10.1002/joc.5820

    Article  Google Scholar 

  • Long SP (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312(5782):1918–1921. https://doi.org/10.1126/science.1114722

    Article  Google Scholar 

  • Mall RK, Lal M, Bhatia VS, Rahore LS, Singh R (2004) Mitigating climate change impact on soybean productivity in India: a simulation study. Agric For Meteorol 121:113–125. https://doi.org/10.1016/S0168-1923(03)00157-6

    Article  Google Scholar 

  • Mascaro G, Viola F, Deidda R (2018) Evaluation of precipitation from EURO-CORDEX regional climate simulations in a small-scale Mediterranean Site. J Geophys Res. https://doi.org/10.1002/2017jd027463

    Article  Google Scholar 

  • MATE (2015) Etude diagnostique sur la biodiversité et les changements climatiques en Algérie. Cooperation project between the Algerian Ministry of land planning and the environment (MATE), United Nations Development Program (UNDP) and Global Environment Facility (GEF). Final Report, p 111

  • MEER and GIZ (2019) National climate Plan of Algeria established by the Ministry of the Environment and Renewable Energy (MEER) and the Deutsche Gesellschat fur Interbational Zummenarbet (GIZ), p 60

  • Mina U, Singh S, Singh B, Tiwari S, Singh D, Kumar P (2019) Assessment of low intensity solar radiation susceptibility in 20 wheat varieties under field conditions grown in Indo-Gangetic Plains of India. J Crop Sci Biotechnol 22:193–203. https://doi.org/10.1007/s12892-018-0134-0

    Article  Google Scholar 

  • Nonhebel S (1996) Effects of temperature rise and increase in CO2 concentration on simulated wheat yields in Europe. Clim Change 34(1):73–90. https://doi.org/10.1007/BF00139254

    Article  Google Scholar 

  • Nouri M, Homaee M, Bannayan M, Hoogenboom G (2017) Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change. Agric Water Manag 186:108–119. https://doi.org/10.1016/j.agwat.2017.03.004

    Article  Google Scholar 

  • Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2—Do 268 photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280. https://doi.org/10.1111/j.1469-8137.2004.01033.x

    Article  Google Scholar 

  • NWRA (1993) Map of precipitation. National Water Resources Agency. http://www.anrh.dz/pluvio.htm

  • Ongoma V, Chen H, Gao C, Nyongesa AM, Polong F (2017) Future changes in climate extremes over Equatorial East Africa based on CMIP5 multimodel ensemble. Nat Hazards 90(2):901–920. https://doi.org/10.1007/s11069-017

    Article  Google Scholar 

  • Paymard P, Bannayan M, Haghighi RS (2018) Analysis of the climate change effect on wheat production systems and investigate the potential of management strategies. Nat Hazards 91(3):1237–1255. https://doi.org/10.1007/s11069-

    Article  Google Scholar 

  • Paymard P, Yaghoubi F, Nouri M, Bannayan M (2019) Projecting climate change impacts on rainfed wheat yield, water demand, and water use efficiency in northeast Iran. Theor Appl Climatol. https://doi.org/10.1007/s00704-019-02896-8

    Article  Google Scholar 

  • Pérez-Palazón M, Pimentel R, Polo M (2018) Climate trends impact on the snow fall regime in Mediterranean mountain areas: future scenario assessment in Sierra Nevada (Spain). Water 10(6):720. https://doi.org/10.3390/w10060720

    Article  Google Scholar 

  • Pugh TAM, Müller C, Elliott J, Deryng D, Folberth C, Olin S et al (2016) Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nat Commun 7:12608. https://doi.org/10.1038/ncomms12608

    Article  Google Scholar 

  • Raes D (2012) The ETo Calculator. Reference Manual, Version 3.2. Food and Agriculture Organization of the United Nations. Land and Water Division, p 38

  • Raes D, Steduto P, Hsiao TE, Fereres E (2009) AquaCrop—the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agron J 101(3):438–447. https://doi.org/10.2134/agronj2008.0140s

    Article  Google Scholar 

  • Raes D, Steduto P, Hsiao TC, Fereres E (2016) AquaCrop Version 5.0 Reference Manual. Annex I. Food and Agriculture Organization of the United Nations, Rome, Italy

  • Raes D, Steduto P, Hsiao TC, Fereres E (2018) In AquaCrop Version 6.0–6.1. Chapter 3: Calculation procedures. FA0. Rome. Italy, p 108

  • Rashid MA, Jabloun M, Andersen MN, Zhang X, Olesen JE (2019) Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain. Agric Water Manag 222:193–203. https://doi.org/10.1016/j.agwat.2019.06.004

    Article  Google Scholar 

  • Reder A, Raffa M, Montesarchio M, Mercogliano P (2020) Performance evaluation of regional climate model simulations at different spatial and temporal scales over the complex orography area of the Alpine region. Nat Hazards 102:151–177. https://doi.org/10.1007/s11069-020-03916-x

    Article  Google Scholar 

  • Rezzoug W, Gabrielle B (2015) Simulation of climate change impact on wheat production in the Tiaret region of Algeria using the DSSAT model. ESJ 11(9):249–259

    Google Scholar 

  • Roderick ML, RotstaynLD Farquhar GD, Hobbins MT (2007) On the attribution of changing pan evaporation. Geophys Res Lett 34(17):L17403. https://doi.org/10.1029/2007gl031166

    Article  Google Scholar 

  • Romera R, Sánchez E, Domínguez M, Gaertner M, Gallardo C (2015) Evaluation of present-climate precipitation in 25 km resolution regional climate model simulations over Northwest Africa. Clim Res 66(2):125–139. https://doi.org/10.3354/cr01330

    Article  Google Scholar 

  • Saadi S, Todorovic M, TanasijevicL Pereira L S, Pizzigalli C, Lionello P (2015) Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agric Water Manag 147:103–115. https://doi.org/10.1016/j.agwat.2014.05.008

    Article  Google Scholar 

  • Sage RF, Santrucek J, Grise DJ (1995) Temperature effects on the photosynthetic response of C3 plants to long-term CO2 enrichment. Vegetatio 121:67–77. https://doi.org/10.1007/BF00044673

    Article  Google Scholar 

  • Saxton KE, Willey PH (2009) The SPAW model for agricultural field and pond hydrologic simulation. Agric Res Serv, USDA, p 39

    Google Scholar 

  • Shavrukov Y, Kurishbayev A, Jatayev S, ShvidchenkoV Zotova L, Koekemoer F et al (2017) Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Front Plant Sci 8:1950. https://doi.org/10.3389/fpls.2017.01950

    Article  Google Scholar 

  • Silva VPR, Silva RA, Maciel GF, Braga CC et al (2017) Calibration and validation of the AquaCrop model for the soybean crop grown under different levels of irrigation in the Motopiba region. Brazil. Cienc Rural 48(1):8. https://doi.org/10.1590/0103-8478cr20161118

    Article  Google Scholar 

  • Smoyer TKE, Kuhn R, Hudson A (2003) Heat wave hazards: an overview of heat wave impacts in Canada. Nat Hazards 28:465–486. https://doi.org/10.1023/a:1022946528157

    Article  Google Scholar 

  • Steduto P, Hsiao TC, Raes D, Fereres E (2009) AquaCrop the FAO crop model to simulate yield response to water: i. concepts and underlying principles. Agron J 101(3):426–437. https://doi.org/10.2134/agronj2008.0139s

    Article  Google Scholar 

  • Steduto P, Hsiao CT, Fereres E, Raes D (2012) Crop yield response to water. FAO irrigation and drainage paper 66

  • Stöckle CO, Higgins S, Nelson R, Abatzoglou J, Huggins D, Pan W et al (2017) Evaluating opportunities for an increased role of winter crops as adaptation to climate change in dryland cropping systems of the U.S. Inland Pacific Northwest. Clim Change 146(1–2):247–261. https://doi.org/10.1007/s10584-017-1950-z

    Article  Google Scholar 

  • Tan K, Zhou G, Lv X, Guo J, Ren S (2018) Combined effects of elevated temperature and CO2 enhance threat from low temperature hazard to winter wheat growth in North China. Sci Rep UK. https://doi.org/10.1038/s41598-018-22559-4

    Article  Google Scholar 

  • Tao F, Zhang Z (2013) Climate change, wheat productivity and water use in the North China Plain: a new super-ensemble-based probabilistic projection. Agric For Meteorol 170:146–165. https://doi.org/10.1016/j.agrformet.2011.10.003

    Article  Google Scholar 

  • Tomozeiu R, Agrillo G, Cacciamani C, Pavan V (2013) Statistically downscaled climate change projections of surface temperature over Northern Italy for the periods 2021–2050 and 2070–2099. Nat Hazards 72(1):143–168. https://doi.org/10.1007/s11069-013-0552-y

    Article  Google Scholar 

  • Tubielo EN, Amthor JS, Boote KJ, Donatelli M, Easterling W, Fischer G, Gifford RM, Howden M, Reilly J, Rosenzweig C (2007) Crop response to elevated CO2 and world food supply: a comment on “Food for Thought” by Long et al. Science 312:1918–1921. Eur J Agron 25:215–223. https://doi.org/10.1016/j.eja.2006.10.002

    Article  Google Scholar 

  • Van Gaelen H (2016) Evaluating agricultural management from field to catchment scale development of a parsimonious agro-hydrological model. Faculty of Bioscience Engineering, KU Leuven, Leuven, p 221

    Google Scholar 

  • Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K et al (2011) The representative concentration pathways: an overview. Clim Change 109(1–2):5–31. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Vanuytrecht E, Raes D, Steduto P, Hsiao TC, Fereres E, Heng LK et al (2014) AquaCrop: FAO’s crop water productivity and yield response model. Environ Model Softw 62:351–360. https://doi.org/10.1016/j.envsoft.2014.08.005

    Article  Google Scholar 

  • Wallach D, Goffinet B (1987) Mean squared error of prediction in models for studying economic and agricultural systems. Biometrics 43:561–576

    Article  Google Scholar 

  • Wang B, Feng P, Chen C, Liu DL, Waters C, Yu Q (2019) Designing wheat ideotypes to cope with future changing climate in South-Eastern Australia. Agric Syst 170:9–18. https://doi.org/10.1016/j.agsy.2018.12.005

    Article  Google Scholar 

  • Weyant J, Azar C, Kainuma M, Kejun J, Nakicenovic, N etal (2009) Report of 2.6 Versus 2.9 Watts/m2 RCPP Evaluation Panel, Geneva, Switzerland, IPCC Secretariat

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 63:1309–1313. https://doi.org/10.1175/1520-0477(1982)063%3c1309:SCOTEO%3e2.0.CO;2

    Article  Google Scholar 

  • WMO (2019) The global climate in 2015–2019 World Meteorological Organization publication. p 20

  • Xiao D, Bai H, Liu DL (2018) Impact of future climate change on wheat production: a simulated case for china’s wheat system. Sustain Basel 10(4):1277. https://doi.org/10.3390/su10041277

    Article  Google Scholar 

  • Xiong W, Holman I, Lin E, Conway D, Li Y, Wu W (2012) Untangling relative contributions of recent climate and CO2 trends to national cereal production in China. Environ Res Lett 7(4):044014. https://doi.org/10.1088/1748-9326/7/4/044014

    Article  Google Scholar 

  • Xu Z, Shimizu H, Yagasaki Y, Ito S, Zheng Y, Zhou G (2013) Interactive effects of elevated CO2, drought, and warming on plants. J Plant Growth Regul 32(4):692–707

    Article  Google Scholar 

  • Yeşilköyb S, Şaylan L (2020) Assessment and modelling of crop yield and water footprint of winter wheat by aquacrop. Ital J Agrometeorol 3:3–14. https://doi.org/10.13128/ijam-859

    Article  Google Scholar 

  • Yu Q, Li L, Luo Q, Eamus D, Xu S, Chen C et al (2013) Year patterns of climate impact on wheat yields. Int J Climatol 34(2):518–528. https://doi.org/10.1002/joc.3704

    Article  Google Scholar 

  • Zhang Y, Liu C, Tang Y, Yang Y (2007) Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J Geophys Res. https://doi.org/10.1029/2006jd008161

    Article  Google Scholar 

  • Zhang D, Liu X, Hong H (2013) Assessing the effect of climate change on reference evapotranspiration in China. Stoch Environ Res Risk Assess 27:1871–1881. https://doi.org/10.1007/s00477-013-0723-0

    Article  Google Scholar 

  • Zhao J, Wang Z (2020) Future trends of water resources and influences on agriculture in China. PLoS ONE 15(4):e0231671. https://doi.org/10.1371/journal.pone.0231671

    Article  Google Scholar 

  • Zhao Y, Li Z, Cai S, Wang H (2020) Characteristics of extreme precipitation and runoff in the Xijiang River Basin at global warming of 1.5 C and 2 C. Nat Hazards 101:669–688. https://doi.org/10.1007/s11069-020-03889-x

    Article  Google Scholar 

  • Zheng Z, Cai H, Wang Z, Wang X (2020) Simulation of climate change impacts on phenology and production of winter wheat in North western China using CERES-wheat model. Atmos Basel 11(7):681. https://doi.org/10.3390/atmos11070681

    Article  Google Scholar 

  • Zwart SJ, Bastiaanssen WGM, de Fraiture C, Molden DJ (2010) A global benchmark map of water productivity for rainfed and irrigated wheat. Agric Water Manag 97(10):1617–1627. https://doi.org/10.1016/j.agwat.2010.05.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tassadit Kourat.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare. All co-authors have seen and agree with the contents of the manuscript, and there is no financial interest to report. We certify that the submission is original work and is not under review at any other publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kourat, T., Smadhi, D., Mouhouche, B. et al. Assessment of future climate change impact on rainfed wheat yield in the semi-arid Eastern High Plain of Algeria using a crop model. Nat Hazards 107, 2175–2203 (2021). https://doi.org/10.1007/s11069-020-04435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-020-04435-5

Keywords

Navigation