Skip to main content
Log in

Quantum Tomograph for Measurement and Characterization of Quantum States of Biphoton Sources

  • Published:
Measurement Techniques Aims and scope

The development of methods and devices for measuring the quantum states of photon fluxes is a matter of current interest. In this paper, we propose a prototype device for characterizing biphoton light sources using quantum tomography based on spontaneous parametric down-conversion. This prototype device is an experimental implementation of a specialized quantum tomograph designed to measure the quantum polarization states of radiation generated by biphoton sources. In this article, we present the operational principle of the device for characterizing biphoton light sources and describe our specially developed software that enables determination of the statistical characteristics of the measured quantum state, calculation of the tomographic and most probable estimates of the density matrix, and the measurement errors of the density matrix elements, as well as evaluation of the quality of the quantum state of the biphotons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. S. A. Magnitskiy, D. N. Frolovtsev, D. P. Agapov, et al., “Metrology of single photons for quantum information technologies,” Izmer. Tekhn., No. 3, 24–29 (2017), DOI: https://doi.org/10.32446/0368-1025it.2017-3-24-29.

  2. G. M. D’Ariano, M. G. Paris, and M. F. Sacchi, Adv. Imag. Elect. Phys., 128, 206–309 (2003).

    Google Scholar 

  3. S. S. Straupe, D. P. Ivanov, A. A. Kalinkin, et al., Phys. Rev. A., 83, No. 6, 060302 (2011), DOI: https://doi.org/10.1103/PhysRevA.83.060302.

  4. R. T. Thew, K. Nemoto, A. G. White, and W. J. Munro, Phys. Rev. A., 66, No. 1, 012303 (2002), DOI: https://doi.org/10.1103/PhysRevA.66.012303.

  5. ETSI GS QKD 012 V1.1.1 (2019-02), Quantum Key Distribution (QKD); Device and Communication Channel Parameters for QKD Deployment (2019).

  6. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Phys. Rev. A., 64, No. 5, 052312 (2001), DOI: https://doi.org/10.1103/PhysRevA.64.052312.

  7. D. N. Frolovtsev and S. A. Magnitskiy, Patent No. 2636808 RF, Izobret. Polezn. Modeli, No. 2016126342 (2018).

  8. P. G. Kwiat, E. Waks, A. G. White, et al., Phys. Rev. A., 60, No. 2, R773 (1999), DOI: https://doi.org/10.1103/PhysRevA.60.R773.

  9. R. Rangarajan, M. Goggin, and P. Kwiat, Opt. Express, 17, No. 21, 18920–18933 (2009), DOI: https://doi.org/10.1364/OE.17.018920.

    Article  ADS  Google Scholar 

  10. M. J. Powell, Comput. J., 7, No. 2, 155–162 (1964), DOI: https://doi.org/10.1093/comjnl/7.2.155.

    Article  MathSciNet  Google Scholar 

  11. W. K. Wootters, Phys. Rev. Lett., 80, No. 10, 2245 (1998), DOI: https://doi.org/10.1103/PhysRevLett.80.2245.

    Article  ADS  Google Scholar 

  12. W. K. Wootters, Quatum Inf. Comput., 1, No. 1, 27–44 (2001).

    Google Scholar 

  13. A. K. Ekert, Phys. Rev. Lett., 67, No. 6, 661 (1991), DOI: https://doi.org/10.1103/PhysRevLett.67.661.

    Article  ADS  MathSciNet  Google Scholar 

  14. F. Kaneda, K. Garay-Palmett, A. B. U’Ren, and P. G. Kwiat, Opt. Express, 24, No. 10, 10733–10747 (2016), DOI: https://doi.org/10.1364/OE.24.010733.

    Article  ADS  Google Scholar 

  15. P. G. Kwiat, K. Mattle, H. Weinfurter, et al., Phys. Rev. Lett., 75, No. 24, 4337 (1995), DOI: https://doi.org/10.1103/PhysRevLett.75.4337.

  16. T. Kim, M. Fiorentino, and F. N. Wong, Phys. Rev. A., 73, No. 1, 012316 (2006), DOI: https://doi.org/10.1103/PhysRevA.73.012316.

    Article  ADS  Google Scholar 

  17. M. Hentschel, H. Hübel, A. Poppe, and A. Zeilinger, Opt. Express, 17, No. 25, 23153–23159 (2009), DOI: https://doi.org/10.1364/OE.17.023153.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. N. Frolovtsev or A. V. Demin.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 4, pp. 20–26, April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolovtsev, D.N., Magnitskiy, S.A. & Demin, A.V. Quantum Tomograph for Measurement and Characterization of Quantum States of Biphoton Sources. Meas Tech 63, 273–280 (2020). https://doi.org/10.1007/s11018-020-01783-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-020-01783-3

Keywords

Navigation