Skip to main content
Log in

Topology optimization of planar heat sinks considering out-of-plane design-dependent deformation problems

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

With the increasing development of topology optimization theory in thermal-fluid problems, it has been widely applied in design problems of cooling structures. However, little researches have concurrently considered the design-dependent mechanical problems of optimized structures. This paper deals with porosity-based topology optimization of forced convection planar heat sinks considering out-of-plane design-dependent deformation problems. The optimization is performed on the middle cross-section and the mechanical behaviors of the upper cover plate are considered. Governing equations of fluid flow, heat transfer, and structural mechanic fields are constructed. Particularly, to concurrently model design-dependent loads and boundary conditions, a spring term with design-dependent stiffnesses and a design-dependent pressure term are introduced into the out-of-plane mechanical model. Numerical examples in fluid-mechanical decoupled and weakly-coupled cases are given to demonstrate the validity and potential of the present approach. Additionally, the presented scheme is also evaluated in cases considering the global mechanical behavior and cases considering the local mechanical behavior. Comparisons and verifications show that the proposed approach is effective in yielding planar heat sinks with optimized heat transfer capabilities and well-controlled out-of-plane mechanical behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Garimella SV, Fleischer AS, Murthy JY et al (2008) Thermal challenges in next-generation electronic systems. IEEE Trans Compon Packag Technol. https://doi.org/10.1109/TCAPT.2008.2001197

    Article  Google Scholar 

  2. Ben Sik Ali A, Kriaa W, Mhiri H, Bournot P (2018) Analysis of the influence of cooling hole arrangement on the protection of a gas turbine combustor liner. Meccanica 53:2257–2271. https://doi.org/10.1007/s11012-018-0824-4

    Article  Google Scholar 

  3. Zeng S, Sun Q, Lee PS (2020) Thermohydraulic analysis of a new fin pattern derived from topology optimized heat sink structures. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118909

    Article  Google Scholar 

  4. Li H, Ding X, Meng F et al (2019) Optimal design and thermal modelling for liquid-cooled heat sink based on multi-objective topology optimization: an experimental and numerical study. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118638

    Article  Google Scholar 

  5. Christen D, Stojadinovic M, Biela J (2017) Energy efficient heat sink design: natural versus forced convection cooling. IEEE Trans Power Electron 32(11):8693–8704. https://doi.org/10.1109/TPEL.2016.2640454

    Article  Google Scholar 

  6. Ghani IA, Sidik NAC, Kamaruzaman N (2017) Hydrothermal performance of microchannel heat sink: the effect of channel design. Int J Heat Mass Transf 107:21–44

    Article  Google Scholar 

  7. Sui Y, Teo CJ, Lee PS et al (2010) Fluid flow and heat transfer in wavy microchannels. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.022

    Article  MATH  Google Scholar 

  8. Geyer PE, Fletcher DF, Haynes BS (2007) Laminar flow and heat transfer in a periodic trapezoidal channel with semi-circular cross-section. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.050

    Article  MATH  Google Scholar 

  9. Xia C, Fu J, Lai J et al (2015) Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2015.07.024

    Article  Google Scholar 

  10. Hong DP, Lee DY, Byon C (2014) Least material optimization of natural-convective heat sinks. Int J Precis Eng Manuf. https://doi.org/10.1007/s12541-014-0481-z

    Article  Google Scholar 

  11. Wang W, Tian X, Qian S et al (2020) Secondary shape optimization of topological boundary of cold plate channels. Meccanica. https://doi.org/10.1007/s11012-019-01108-x

    Article  MathSciNet  Google Scholar 

  12. Zhao X, Zhou M, Sigmund O, Andreasen CS (2018) A “poor man’s approach” to topology optimization of cooling channels based on a Darcy flow model. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.090

    Article  Google Scholar 

  13. Ahmed HE, Ahmed MI (2015) Optimum thermal design of triangular, trapezoidal and rectangular grooved microchannel heat sinks. Int Commun Heat Mass Transf. https://doi.org/10.1016/j.icheatmasstransfer.2015.05.009

    Article  Google Scholar 

  14. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications, engineering. Springer, Berlin

    MATH  Google Scholar 

  15. Joo Y, Lee I, Kim SJ (2018) Efficient three-dimensional topology optimization of heat sinks in natural convection using the shape-dependent convection model. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.009

    Article  Google Scholar 

  16. Dede E (2009) Multiphysics topology optimization of heat transfer and fluid flow systems. In: Proceedings of COMSOL users conference. Retrieved from cds.comsol.com/access/dl/papers/6282/Dede.pdf

  17. Yoon GH (2010) Topological design of heat dissipating structure with forced convective heat transfer. J Mech Sci Technol. https://doi.org/10.1007/s12206-010-0328-1

    Article  Google Scholar 

  18. Dilgen SB, Dilgen CB, Fuhrman DR et al (2018) Density based topology optimization of turbulent flow heat transfer systems. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-018-1967-6

    Article  MathSciNet  MATH  Google Scholar 

  19. Yaji K, Ogino M, Chen C, Fujita K (2018) Large-scale topology optimization incorporating local-in-time adjoint-based method for unsteady thermal-fluid problem. Struct Multidiscip Optim 58(2):817–822. https://doi.org/10.1007/s00158-018-1922-6

    Article  MathSciNet  Google Scholar 

  20. Lv Y, Liu S (2018) Topology optimization and heat dissipation performance analysis of a micro-channel heat sink. Meccanica. https://doi.org/10.1007/s11012-018-0918-z

    Article  MathSciNet  Google Scholar 

  21. Van Oevelen T, Baelmans M (2014) Application of topology optimization in a conjugate heat transfer problem. In: OPT-i 2014—1st international conference on engineering and applied sciences optimization, proceedings

  22. Yaji K, Yamada T, Yoshino M et al (2016) Topology optimization in thermal-fluid flow using the lattice Boltzmann method. J Comput Phys. https://doi.org/10.1016/j.jcp.2015.12.008

    Article  MathSciNet  MATH  Google Scholar 

  23. Yoon GH (2012) Topological layout design of electro-fluid-thermal-compliant actuator. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2011.11.005

    Article  Google Scholar 

  24. Zhao X, Zhou M, Liu Y et al (2019) Topology optimization of channel cooling structures considering thermomechanical behavior. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-018-2087-z

    Article  MathSciNet  Google Scholar 

  25. Li T, Wu T, Ding X et al (2017) Design of an internally cooled turning tool based on topology optimization and CFD simulation. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-016-9804-9

    Article  Google Scholar 

  26. Kim SH, Ahn BH, Ha JM et al (2016) Structural and vibration analysis considering the flow velocity of the heat exchanger. Int J Precis Eng Manuf. https://doi.org/10.1007/s12541-016-0090-0

    Article  Google Scholar 

  27. Kim NH, Cho JR, Ra YJ (2018) Structural integrity analysis and evaluation of cooled cooling air heat exchanger for aero engine. Int J Precis Eng Manuf. https://doi.org/10.1007/s12541-018-0064-5

    Article  Google Scholar 

  28. Kumar P, Frouws JS, Langelaar M (2020) Topology optimization of fluidic pressure-loaded structures and compliant mechanisms using the Darcy method. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-019-02442-0

    Article  MathSciNet  Google Scholar 

  29. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Multidiscip Optim Struct 1:1. https://doi.org/10.1007/s00158-013-0956-z

    Article  MathSciNet  Google Scholar 

  30. Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow. Int J Numer Methods Eng. https://doi.org/10.1002/nme.1468

    Article  MathSciNet  MATH  Google Scholar 

  31. Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22:116–124

    Article  Google Scholar 

  32. Lazarov BS, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Methods Eng. https://doi.org/10.1002/nme.3072

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-010-0602-y

    Article  MATH  Google Scholar 

  34. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng. https://doi.org/10.1002/nme.1620240207

    Article  MathSciNet  MATH  Google Scholar 

  35. Alexandersen J, Sigmund O, Aage N (2016) Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.013

    Article  Google Scholar 

  36. Yan S, Wang F, Hong J, Sigmund O (2019) Topology optimization of microchannel heat sinks using a two-layer model. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118462

    Article  Google Scholar 

  37. Zeng S, Kanargi B, Lee PS (2018) Experimental and numerical investigation of a mini channel forced air heat sink designed by topology optimization. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.039

    Article  Google Scholar 

  38. Zhao J, Zhang M, Zhu Y et al (2020) Concurrent optimization of the internal flow channel, inlets, and outlets in forced convection heat sinks. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-020-02670-9

    Article  Google Scholar 

  39. Haertel JHK, Engelbrecht K, Lazarov BS, Sigmund O (2018) Topology optimization of a pseudo 3D thermofluid heat sink model. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.078

    Article  Google Scholar 

  40. Qiu GY, Li XS (2010) A note on the derivation of global stress constraints. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-009-0397-x

    Article  MathSciNet  MATH  Google Scholar 

  41. París J, Navarrina F, Colominas I, Casteleiro M (2009) Topology optimization of continuum structures with local and global stress constraints. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-008-0336-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 51677104. The author thanks Prof. Krister Svanberg for use of the MMA optimizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhang, M., Zhu, Y. et al. Topology optimization of planar heat sinks considering out-of-plane design-dependent deformation problems. Meccanica 56, 1693–1706 (2021). https://doi.org/10.1007/s11012-021-01337-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-021-01337-z

Keywords

Navigation