Skip to main content
Log in

Large-scale topology optimization incorporating local-in-time adjoint-based method for unsteady thermal-fluid problem

  • BRIEF NOTE
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This note briefly reports on the applicability of the local-in-time (LT) adjoint-based method to a large-scale topology optimization problem with unsteady thermal-fluid. The basic idea of the LT method is to divide a time-dependent optimization problem into reasonable subproblems to reduce memory cost. We demonstrate that the proposed method solves the large-scale topology optimization problem by incorporating the LT method, the lattice Boltzmann method, and parallel computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aage N, Andreassen E, Lazarov BS (2015) Topology optimization using PETSc: an easy-to-use, fully parallel, open source topology optimization framework. Struct Multidisc Optim 51(3):565– 572

    Article  MathSciNet  Google Scholar 

  • Alexandersen J, Sigmund O, Aage N (2016) Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection. Int J Heat Mass Trans 100:876–891

    Article  Google Scholar 

  • Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Int J Numer Meth Fluids 41 (1):77–107

    Article  MathSciNet  MATH  Google Scholar 

  • Chen C, Yaji K, Yamada T, Izui K, Nishiwaki S (2017) Local-in-time adjoint-based topology optimization of unsteady fluid flows using the lattice Boltzmann method. Mechanical Engineering Journal 4(3):17-00120

    Article  Google Scholar 

  • Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30(1):329–364

    Article  MathSciNet  Google Scholar 

  • Coffin P, Maute K (2016) A level-set method for steady-state and transient natural convection problems. Struct Multidisc Optim 53(5):1047–1067

    Article  MathSciNet  Google Scholar 

  • Evgrafov A, Rupp CJ, Maute K, Dunn ML (2008) Large-scale parallel topology optimization using a dual-primal substructuring solver. Struct Multidisc Optim 36(4):329–345

    Article  MathSciNet  MATH  Google Scholar 

  • Griewank A, Walther A (2000) Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Trans Math Softw 26(1):19–45

    Article  MATH  Google Scholar 

  • Hinze M, Sternberg J (2005) A-revolve: an adaptive memory-reduced procedure for calculating adjoints; with an application to computing adjoints of the instationary Navier–Stokes system. Optim Methods Softw 20(6):645–663

    Article  MathSciNet  MATH  Google Scholar 

  • Inamuro T, Yoshino M, Inoue H, Mizuno R, Ogino F (2002) A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem. J Comput Phys 179(1):201–215

    Article  MATH  Google Scholar 

  • Kreissl S, Pingen G, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Meth Eng 87(13):1229–1253

    MathSciNet  MATH  Google Scholar 

  • Łaniewski-Wołłk Ł, Rokicki J (2016) Adjoint lattice Boltzmann for topology optimization on multi-GPU architecture. Comput Math Appl 71(3):833–848

    Article  MathSciNet  MATH  Google Scholar 

  • Nørgaard S, Sigmund O, Lazarov B (2016) Topology optimization of unsteady flow problems using the lattice Boltzmann method. J Comput Phys 307:291–307

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4-5):401–424

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Meth Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Yaji K, Yamada T, Yoshino M, Matsumoto T, Izui K, Nishiwaki S (2014) Topology optimization using the lattice Boltzmann method incorporating level set boundary expressions. J Comput Phys 274:158–181

    Article  MathSciNet  MATH  Google Scholar 

  • Yaji K, Yamada T, Yoshino M, Matsumoto T, Izui K, Nishiwaki S (2016) Topology optimization in thermal-fluid flow using the lattice Boltzmann method. J Comput Phys 307:355–377

    Article  MathSciNet  MATH  Google Scholar 

  • Yamaleev NK, Diskin B, Nielsen EJ (2010) Local-in-time adjoint-based method for design optimization of unsteady flows. J Comput Phys 229(14):5394–5407

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 16H06935, and by the Collaborative Research Project on Computer Science with High-Performance Computing in Nagoya University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Yaji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaji, K., Ogino, M., Chen, C. et al. Large-scale topology optimization incorporating local-in-time adjoint-based method for unsteady thermal-fluid problem. Struct Multidisc Optim 58, 817–822 (2018). https://doi.org/10.1007/s00158-018-1922-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-1922-6

Keywords

Navigation