Skip to main content

Advertisement

Log in

Ultra-high-strain-rate shearing and deformation twinning in nanocrystalline aluminum

  • Experimental Solid Mechanics
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Nanocrystalline aluminum films with grain sizes of 50–100 nm were made through E-beam evaporation. The films were then subjected to high-rate shearing deformations with strain rates of 105–106 s−1, with local shear stresses of the order of 10 GPa. The experimental configuration is that of a compression–torsion Kolsky bar, where the specimen is a thin film (thickness 200 nm) mounted on a silicon wafer ring. Strain rates during the shearing are determined from the measured torsional waves in the bars. Site-specific TEM samples are prepared using focused ion beam micromachining to investigate the regions of large plastic deformation. Deformation twins and stacking faults are found to develop under the high-strain-rate shearing. The formation of twinning in pure aluminum with comparatively large grain sizes and the high-strain-rate promotion of twinning are discussed, and possible mechanisms are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Meyers MA, Voehringer O, Chen YJ (1999) A constitutive description of the slip-twinning transition in metals. In: Ankem S, Pande CS (eds) Advances in twinning, vol 204. The Minerals and Materials Society, Japan, pp 43–65

    Google Scholar 

  2. Tadmor EB, Bernstein N (2004) A first-principles measure for the twinnability of FCC metals. J Mech Phys Solids 52:2507–2519

    Article  ADS  MATH  Google Scholar 

  3. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2002) Dislocation processes in the deformation of nanocrystalline aluminum by molecular-dynamics simulation. Nat Mater 1:45–48

    Article  ADS  Google Scholar 

  4. Chen M, Ma E, Hemker KJ, Sheng H, Wang Y, Cheng X (2003) Deformation twinning in nanocrystalline aluminum. Science 300:1275–1277

    Article  ADS  Google Scholar 

  5. Liao XZ, Zhou F, Lavernia EJ, Srinivasan SG, Baskes MI, He DW, Zhu YT (2003) Deformation mechanism in nanocrystalline aluminum: partial dislocation slip. Appl Phys Lett 83(4):632

    Article  ADS  Google Scholar 

  6. Pond RC, Garcia-Garcia LMF (1981) Deformation twinning in aluminum. Inst Phys Conf Ser 61:495–498

    Google Scholar 

  7. Warner DH, Curtin WA, Qu Q (2007) Rate dependence of crack-tip processes predicts twinning trends in FCC metals. Nat Mater 6:876–881

    Article  ADS  Google Scholar 

  8. Johari O, Thomas G (1964) Substructures in explosively deformed Cu and Cu-Al alloys. Acta Metall 12(10):1153–1159

    Article  Google Scholar 

  9. Nolder RL, Thomas G (1964) The substructure of plastically deformed nickel. Acta Metall 12(2):227–240

    Article  Google Scholar 

  10. Mahajan S, Chin GY (1973) Formation of deformation twins in f.c.c. crystals. Acta Matallurg 21:1353–1363

    Article  Google Scholar 

  11. Venables JA (1964) The electron microscopy of deformation twins. J Phys Chem Solids 25:685–692

    Article  ADS  Google Scholar 

  12. Liao XZ, Zhou F, Lavernia EJ, He DW, Zhu YT (2003) Deformation twins in nanocrystalline aluminum. Appl Phys Lett 83:5062–5064

    Article  ADS  Google Scholar 

  13. Zhu YT, Liao XZ, Srinivasan SG, Zhao YH, Baskes MI, Zhou F, Lavernia EJ (2004) Nucleation and growth of deformation twins in nanocrystalline aluminum. Appl Phys Lett 85(21):5049

    Article  ADS  Google Scholar 

  14. Zhu YT, Liao XZ, Srinivasan SG, Lavernia EJ (2005) Nucleation of deformation twins in nanocrystalline face-centered cubic metals processed by severe plastic deformation. J Appl Phys 98(3):034319

    Article  ADS  Google Scholar 

  15. Wu XL, Liao XZ, Srinivasan SG, Zhou F, Lavernia EJ, Valiev RZ, Zhu YT (2008) New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. Phys Rev Lett 100:095701

    Article  ADS  Google Scholar 

  16. Li B, Cao B, Ramesh K, Ma E (2009) A nucleation mechanism of deformation twins in pure aluminum. Acta Mater 57(15):4500–4507

    Article  Google Scholar 

  17. Asaro RJ, Suresh S (2005) Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater 53:3369–3392

    Article  Google Scholar 

  18. Zhu B, Asaro RJ, Krysl P, Bailey R (2005) Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals. Acta Mater 53(18):4825–4838

    Article  Google Scholar 

  19. Ramesh KT (2008) High strain rate and impact experiments. In: Sharpe WN Jr (ed) Handbook of experimental solid mechanics. Springer, Berlin, pp 929–960

    Chapter  Google Scholar 

  20. Yadav S, Ramesh TK (1995) The mechanical behavior of tungsten-based composites at very high strain rates. Mater Sci Eng A 203:140–153

    Article  Google Scholar 

  21. Volinsky AA, Moody NR, Gerberich WW (2002) Interfacial toughness measurements for thin films on substrates. Acta Mater 50(3):441–466

    Article  Google Scholar 

  22. Yu MH, Bhushan B (1996) Contact analysis of three-dimensional rough surfaces under frictionless and frictional contact. Wear 200:265–280

    Article  Google Scholar 

  23. Hyun S, Pei L, Molinari J-F, Robbins MO (2004) Finite-element analysis of contact between elastic self-affine surfaces. Phys Rev E 70:026117

    Article  ADS  Google Scholar 

  24. Pei L, Hyun S, Molinari J-F, Robbins MO (2005) Finite element modeling of elasto-plastic contact between rough surfaces. J Mech Phys Solids 53:2385–2409

    Article  ADS  MATH  Google Scholar 

  25. Gianola DS, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker KJ (2006) Stress assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater 54:2253–2263

    Article  Google Scholar 

  26. Duffy J, Campbell JD, Hawley RH (1971) On the use of torsional split Hopkinson bar to study rate effects in 1100-O aluminum. ASME J Appl Mech 37:83–91

    Article  Google Scholar 

  27. Rupert TJ, Gianola DS, Gan Y, Hemker KJ (2009) Experimental observations of stress-driven grain boundary migration. Science 326:1686–1690

    Article  ADS  Google Scholar 

  28. Li J, Malis T, Dionne S (2006) Recent advances in FIB-TEM specimen preparation techniques. Mater Charact 57:64–70

    Article  Google Scholar 

  29. Giannuzzi LA, Stevie FA (1990) A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30:197–204

    Article  Google Scholar 

  30. Giannuzzi LA, Kempshall BW, Schwarz SM, Lomness JK, Prenitzer BI, Stevie FA (2005) In: Giannuzzi LA, Stevie FA (eds) Introduction to focused ion beams-instrumentation, theory, techniques and practice. Springer, Berlin, pp 201–228

    Chapter  Google Scholar 

  31. Zhu YT (2006) Deformation twins formed in nanocrystalline materials. Mater Sci Forum 503–504:125–132

    Article  Google Scholar 

  32. Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. Wiley, New York

    Google Scholar 

  33. Liao XZ, Srinivasan SG, Zhao YH, Baskes MI, Zhu YT, Zhou F, Lavernia EJ, He DW (2004) Formation mechanism of wide stacking faults in nanocrystalline Al. Appl Phys Lett 84:3564–3566

    Article  ADS  Google Scholar 

  34. Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA (1999) Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys Rev B 59:3393–3407

    Article  ADS  Google Scholar 

  35. Daphalapurkar NP, Ramesh KT (2012) Orientation dependence of the nucleation and growth of partial dislocations and possible twinning mechanisms in aluminum. J Mech Phys Solids 60(2):277–294

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the Army Research Laboratory, the discussion with Prof. Hemker at the Johns Hopkins University, and the technical assistance of Dr. Kenneth Livi with the STEM. This work was performed under the auspices of the Center for Advanced Metallic and Ceramic Systems at Johns Hopkins. This research was sponsored by the Army Research Office through Grant Number DAAD190110536, and in part by the Army Research Laboratory (ARMAC-RTP) under ARMAC-RTP Cooperative Agreement Number DAAD19-01-2-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Daphalapurkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, B., Daphalapurkar, N.P. & Ramesh, K.T. Ultra-high-strain-rate shearing and deformation twinning in nanocrystalline aluminum. Meccanica 50, 561–574 (2015). https://doi.org/10.1007/s11012-014-9952-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-9952-7

Keywords

Navigation