Skip to main content
Log in

Strengthening mechanisms and deformability of nanotwinned AlMg alloys

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

AlMg alloys have widespread industrial applications. Grain refinement techniques have been frequently used to achieve high strength in these alloys. Here, we report on the fabrication of epitaxial co-sputtered AlMg thin films with high-density growth twins. The microstructure evolution with varying Mg composition has been characterized. Nanoindentation and in-situ micropillar compression tests show that the strength of AlMg alloys increases with increasing Mg composition. The flow stress of epitaxial nanotwinned Al–10 at.% Mg thin film exceeds 800 MPa. The modified Hall–Petch plots incorporating the solid solution strengthening effect suggest that, compared to high angle grain boundaries, incoherent twin boundaries are equivalent barriers to the transmission of dislocations in nanotwinned AlMg alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. J. Hirsch: Recent development in aluminium for automotive applications. Trans. Nonferrous Met. Soc. China 24, 1995 (2014).

    CAS  Google Scholar 

  2. J. Hirsch and T. Al-Samman: Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 61, 818 (2013).

    CAS  Google Scholar 

  3. M.E. Fine: Precipitation hardening of aluminum alloys. Metall. Mater. Trans. A 6, 625 (1975).

    Google Scholar 

  4. J. Park and A. Ardell: Correlation between microstructure and calorimetric behavior of aluminum alloy 7075 and AlZnMg alloys in various tempers. Mater. Sci. Eng., A 114, 197 (1989).

    Google Scholar 

  5. D. Richard and P.N. Adler: Calorimetric studies of 7000 series aluminum alloys: I. Matrix precipitate characterization of 7075. Metall. Mater. Trans. A 8, 1177 (1977).

    Google Scholar 

  6. L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, and L.R. Wallenberg: GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater. 49, 3443 (2001).

    CAS  Google Scholar 

  7. W. Han, G. Cheng, S. Li, S. Wu, and Z. Zhang: Deformation induced microtwins and stacking faults in aluminum single crystal. Phys. Rev. Lett. 101, 115505 (2008).

    CAS  Google Scholar 

  8. P. Chowdhury, H. Sehitoglu, H. Maier, and R. Rateick: Strength prediction in NiCo alloys—The role of composition and nanotwins. Int. J. Plast. 79, 237 (2016).

    CAS  Google Scholar 

  9. Y. Zhao, Y. Zhu, X. Liao, Z. Horita, and T. Langdon: Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy. Appl. Phys. Lett. 89, 121906 (2006).

    Google Scholar 

  10. K. Youssef, R. Scattergood, K. Murty, and C. Koch: Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility. Scr. Mater. 54, 251 (2006).

    CAS  Google Scholar 

  11. C. Koch, R. Scattergood, K. Darling, and J. Semones: Stabilization of nanocrystalline grain sizes by solute additions. J. Mater. Sci. 43, 7264 (2008).

    CAS  Google Scholar 

  12. T. Chookajorn, H.A. Murdoch, and C.A. Schuh: Design of stable nanocrystalline alloys. Science 337, 951 (2012).

    CAS  Google Scholar 

  13. A. Detor and C. Schuh: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22, 3233 (2007).

    CAS  Google Scholar 

  14. S. Zhao, C. Meng, F. Mao, W. Hu, and G. Gottstein: Influence of severe plastic deformation on dynamic strain aging of ultrafine grained Al–Mg alloys. Acta Mater. 76, 54 (2014).

    CAS  Google Scholar 

  15. P.V. Liddicoat, X-Z. Liao, Y. Zhao, Y. Zhu, M.Y. Murashkin, E.J. Lavernia, R.Z. Valiev, and S.P. Ringer: Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Commun. 1, 63 (2010).

    Google Scholar 

  16. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y. Zhu: Producing bulk ultrafine-grained materials by severe plastic deformation: Ten years later. JOM 68, 1216 (2016).

    CAS  Google Scholar 

  17. Z. Horita, T. Fujinami, M. Nemoto, and T.G. Langdon: Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties. Metall. Mater. Trans. A 31, 691 (2000).

    Google Scholar 

  18. T.J. Rupert, J.C. Trenkle, and C.A. Schuh: Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 59, 1619 (2011).

    CAS  Google Scholar 

  19. J. Hu, Y. Shi, X. Sauvage, G. Sha, and K. Lu: Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355, 1292 (2017).

    CAS  Google Scholar 

  20. C. Koch, D. Morris, K. Lu, and A. Inoue: Ductility of nanostructured materials. MRS Bull. 24, 54 (1999).

    CAS  Google Scholar 

  21. H. Wang, A. Tiwari, A. Kvit, X. Zhang, and J. Narayan: Epitaxial growth of TaN thin films on Si(100) and Si(111) using a TiN buffer layer. Appl. Phys. Lett. 80, 2323 (2002).

    CAS  Google Scholar 

  22. R. Valiev: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).

    CAS  Google Scholar 

  23. L. Lu, X. Chen, X. Huang, and K. Lu: Revealing the maximum strength in nanotwinned copper. Science 323, 607 (2009).

    CAS  Google Scholar 

  24. K. Lu, F. Yan, H. Wang, and N. Tao: Strengthening austenitic steels by using nanotwinned austenitic grains. Scr. Mater. 66, 878 (2012).

    CAS  Google Scholar 

  25. D. Bufford, Y. Liu, J. Wang, H. Wang, and X. Zhang: In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. Nat. Commun. 5, 4864 (2014).

    CAS  Google Scholar 

  26. I.J. Beyerlein, X. Zhang, and A. Misra: Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44, 329 (2014).

    CAS  Google Scholar 

  27. X. Zhang, H. Wang, X. Chen, L. Lu, K. Lu, R. Hoagland, and A. Misra: High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Appl. Phys. Lett. 88, 173116 (2006).

    Google Scholar 

  28. Y. Zhang, J. Wang, H. Shan, and K. Zhao: Strengthening high-stacking-fault-energy metals via parallelogram nanotwins. Scr. Mater. 108, 35 (2015).

    CAS  Google Scholar 

  29. O. Anderoglu, A. Misra, F. Ronning, H. Wang, and X. Zhang: Significant enhancement of the strength-to-resistivity ratio by nanotwins in epitaxial Cu films. J. Appl. Phys. 106, 24313 (2009).

    Google Scholar 

  30. Q. Li, S.C. Xue, J. Wang, S. Shao, A.H. Kwong, A. Giwa, Z. Fan, Y. Liu, Z.M. Qi, J. Ding, H. Wang, J.R. Greer, H.Y. Wang, and X.H. Zhang: High-strength nanotwinned Al alloys with 9R phase. Adv. Mater. 30, 1704629 (2018).

    Google Scholar 

  31. L. Velasco and A.M. Hodge: Growth twins in high stacking fault energy metals: Microstructure, texture and twinning. Mater. Sci. Eng., A 687, 93 (2017).

    CAS  Google Scholar 

  32. D. Bufford, Z. Bi, Q. Jia, H. Wang, and X. Zhang: Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films. Appl. Phys. Lett. 101, 223112 (2012).

    Google Scholar 

  33. D. Bufford, Y. Liu, Y. Zhu, Z. Bi, Q. Jia, H. Wang, and X. Zhang: Formation mechanisms of high-density growth twins in aluminum with high stacking-fault energy. Mater. Res. Lett. 1, 51 (2013).

    CAS  Google Scholar 

  34. X. Zhang, D. Bufford, H. Wang, and Y. Liu: Method for Producing High Stacking Fault Energy (SFE) Metal Films, Foils, and Coatings with High-density Nanoscale Twin Boundaries. United States Patent No. 10023977 (2014).

  35. K. Yu, D. Bufford, Y. Chen, Y. Liu, H. Wang, and X. Zhang: Basic criteria for formation of growth twins in high stacking fault energy metals. Appl. Phys. Lett. 103, 181903 (2013).

    Google Scholar 

  36. Y. Liu, D. Bufford, H. Wang, C. Sun, and X. Zhang: Mechanical properties of highly textured Cu/Ni multilayers. Acta Mater. 59, 1924 (2011).

    CAS  Google Scholar 

  37. K. Yu, Y. Liu, S. Rios, H. Wang, and X. Zhang: Strengthening mechanisms of Ag/Ni immiscible multilayers with fcc/fcc interface. Surf. Coat. Technol. 237, 269 (2013).

    CAS  Google Scholar 

  38. D. Medlin, G. Campbell, and C.B. Carter: Stacking defects in the 9R phase at an incoherent twin boundary in copper. Acta Mater. 46, 5135 (1998).

    CAS  Google Scholar 

  39. J. Wang, A. Misra, and J. Hirth: Shear response of Σ3 {112} twin boundaries in face-centered-cubic metals. Phys. Rev. B 83, 064106 (2011).

    Google Scholar 

  40. D. Bufford, H. Wang, and X. Zhang: High strength, epitaxial nanotwinned Ag films. Acta Mater. 59, 93 (2011).

    CAS  Google Scholar 

  41. O. Anderoglu, A. Misra, H. Wang, F. Ronning, M.F. Hundley, and X. Zhang: Epitaxial nanotwinned Cu films with high strength and high conductivity. Appl. Phys. Lett. 93, 083108 (2008).

    Google Scholar 

  42. S. Xue, W. Kuo, Q. Li, Z. Fan, J. Ding, R. Su, H. Wang, and X. Zhang: Texture-directed twin formation propensity in Al with high stacking fault energy. Acta Mater. 144, 226 (2018).

    CAS  Google Scholar 

  43. P. Gallagher: The influence of alloying, temperature, and related effects on the stacking fault energy. Metall. Trans. 1, 2429 (1970).

    CAS  Google Scholar 

  44. O. Johari and G. Thomas: Substructures in explosively deformed Cu and Cu–Al alloys. Acta Metall. 12, 1153 (1964).

    CAS  Google Scholar 

  45. A. Rohatgi, K.S. Vecchio, and G.T. Gray: The influence of stacking fault energy on the mechanical behavior of Cu and Cu–Al alloys: Deformation twinning, work hardening, and dynamic recovery. Metall. Mater. Trans. A 32, 135 (2001).

    Google Scholar 

  46. L. Velasco, M.N. Polyakov, and A.M. Hodge: Influence of stacking fault energy on twin spacing of Cu and Cu–Al alloys. Scr. Mater. 83, 33 (2014).

    CAS  Google Scholar 

  47. Y. Zhang, N.R. Tao, and K. Lu: Effect of stacking-fault energy on deformation twin thickness in Cu–Al alloys. Scr. Mater. 60, 211 (2009).

    CAS  Google Scholar 

  48. P-L. Sun, Y. Zhao, J. Cooley, M. Kassner, Z. Horita, T. Langdon, E. Lavernia, and Y. Zhu: Effect of stacking fault energy on strength and ductility of nanostructured alloys: An evaluation with minimum solution hardening. Mater. Sci. Eng., A 525, 83 (2009).

    Google Scholar 

  49. M. Chandran and S. Sondhi: First-principle calculation of stacking fault energies in Ni and Ni–Co alloy. J. Appl. Phys. 109, 103525 (2011).

    Google Scholar 

  50. T. Schulthess, P. Turchi, A. Gonis, and T-G. Nieh: Systematic study of stacking fault energies of random Al-based alloys. Acta Mater. 46, 2215 (1998).

    CAS  Google Scholar 

  51. G.H. Campbell, D.K. Chan, D.L. Medlin, J.E. Angelo, and C.B. Carter: Dynamic observation of the fcc to 9r shear transformation in a copper Σ = 3 incoherent twin boundary. Scr. Mater. 35, 837 (1996).

    CAS  Google Scholar 

  52. F. Ernst, M.W. Finnis, D. Hofmann, T. Muschik, U. Schönberger, U. Wolf, and M. Methfessel: Theoretical prediction and direct observation of the 9R structure in Ag. Phys. Rev. Lett. 69, 620 (1992).

    CAS  Google Scholar 

  53. J. Wang, O. Anderoglu, J.P. Hirth, A. Misra, and X. Zhang: Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals. Appl. Phys. Lett. 95, 021908 (2009).

    Google Scholar 

  54. J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J. Huang, and J. Hirth: Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 58, 2262 (2010).

    CAS  Google Scholar 

  55. L. Liu, J. Wang, S. Gong, and S. Mao: High resolution transmission electron microscope observation of zero-strain deformation twinning mechanisms in Ag. Phys. Rev. Lett. 106, 175504 (2011).

    CAS  Google Scholar 

  56. J. Gu, L. Zhang, S. Ni, and M. Song: Formation of large scaled zero-strain deformation twins in coarse-grained copper. Scr. Mater. 125, 49 (2016).

    CAS  Google Scholar 

  57. S. Xue, Z. Fan, O.B. Lawal, R. Thevamaran, Q. Li, Y. Liu, K. Yu, J. Wang, E.L. Thomas, and H. Wang: High-velocity projectile impact induced 9R phase in ultrafine-grained aluminium. Nat. Commun. 8, 1653 (2017).

    Google Scholar 

  58. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung: Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 62, 141 (2014).

    CAS  Google Scholar 

  59. M. Zha, Y. Li, R.H. Mathiesen, R. Bjørge, and H.J. Roven: Microstructure evolution and mechanical behavior of a binary Al–7Mg alloy processed by equal-channel angular pressing. Acta Mater. 84, 42 (2015).

    CAS  Google Scholar 

  60. R. Kapoor and J. Chakravartty: Deformation behavior of an ultrafine-grained Al–Mg alloy produced by equal-channel angular pressing. Acta Mater. 55, 5408 (2007).

    CAS  Google Scholar 

  61. G. Fan, H. Choo, P. Liaw, and E. Lavernia: Plastic deformation and fracture of ultrafine-grained Al–Mg alloys with a bimodal grain size distribution. Acta Mater. 54, 1759 (2006).

    CAS  Google Scholar 

  62. Z. Shan, E. Stach, J. Wiezorek, J. Knapp, D. Follstaedt, and S. Mao: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).

    CAS  Google Scholar 

  63. G.P.M. Leyson, W.A. Curtin, L.G. Hector, Jr., and C.F. Woodward: Quantitative prediction of solute strengthening in aluminium alloys. Nat. Mater. 9, 750 (2010).

    CAS  Google Scholar 

  64. R.L. Fleischer: Solution hardening by tetragonal dist ortions: Application to irradiation hardening in F.C.C. crystals. Acta Metall. 10, 835 (1962).

    CAS  Google Scholar 

  65. R.L. Fleischer: Substitutional solution hardening. Acta Metall. 11, 203 (1963).

    CAS  Google Scholar 

  66. E. Hall: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc., London, Sect. B 64, 747 (1951).

    Google Scholar 

  67. J. Wyrzykowski and M. Grabski: The Hall–Petch relation in aluminium and its dependence on the grain boundary structure. Philos. Mag. A 53, 505 (1986).

    CAS  Google Scholar 

  68. N. Hansen: Hall–Petch relation and boundary strengthening. Scr. Mater. 51, 801 (2004).

    CAS  Google Scholar 

  69. A. Misra, J. Hirth, and R. Hoagland: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).

    CAS  Google Scholar 

  70. M.D. Sangid, T. Ezaz, H. Sehitoglu, and I.M. Robertson: Energy of slip transmission and nucleation at grain boundaries. Acta Mater. 59, 283 (2011).

    CAS  Google Scholar 

  71. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino: Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr. Mater. 47, 893 (2002).

    CAS  Google Scholar 

  72. R. Hayes, D. Witkin, F. Zhou, and E. Lavernia: Deformation and activation volumes of cryomilled ultrafine-grained aluminum. Acta Mater. 52, 4259 (2004).

    CAS  Google Scholar 

  73. M. Mata, M. Anglada, and J. Alcalá: Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J. Mater. Res. 17, 964 (2002).

    CAS  Google Scholar 

  74. W. Yu, S. Shen, Y. Liu, and W. Han: Nonhysteretic superelasticity and strain hardening in a copper bicrystal with a Σ3 {112} twin boundary. Acta Mater. 124, 30 (2017).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge financial support from Department of Energy BES (Grant No. DE-SC0016337) on performing micropillar preparation experiments. Han W. and H.W. acknowledge the support from the Office of Naval Research (N00014-16-1-2778). Accesses to the Microscopy Facilities at School of Materials Engineering and Life Science at Purdue University are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sichuang Xue or Xinghang Zhang.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, S., Li, Q., Fan, Z. et al. Strengthening mechanisms and deformability of nanotwinned AlMg alloys. Journal of Materials Research 33, 3739–3749 (2018). https://doi.org/10.1557/jmr.2018.372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.372

Navigation