Skip to main content

Advertisement

Log in

Beneficial effects of levetiracetam in streptozotocin-induced rat model of Alzheimer’s disease

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disorder among the elderly. In the light of increasing AD prevalence and lack of effective treatment, new strategies to prevent or reverse this condition are needed. Levetiracetam (LEV) is a newer antiepileptic drug that is commonly used to treat certain types of seizures. Researches indicated that LEV has several other pharmacological activities, including improvement of cognitive function. In this study, the recovery effects of chronic (28 days) administration of LEV (50, 100, and 150 mg/kg, ip) on cognitive deficits caused by the intracerebroventricular (icv) injection of streptozotocin (STZ), as a model for sporadic AD, were evaluated in rats. We also considered the protective effects of LEV against hippocampal cell loss, oxidative damage, acetylcholinesterase (AChE) activity, neuroinflammation, and tauopathy caused by STZ. LEV (100 and 150 mg/kg) significantly attenuated the STZ-induced learning and memory impairments in the passive avoidance and Morris water maze (MWM) tasks. In addition, LEV suppressed STZ-induced hippocampal neuronal loss, while restored alterations in the redox status (lipid peroxides and glutathione), AChE activity, proinflammatory cytokines (IL-1β, IL-6, TNF-α), and hyperphosphorylation of tau linked to STZ administration. In conclusion, our study demonstrated that LEV alleviated hippocampal cell death and memory deficits in STZ-AD rats, through mitigating oxidative damage, suppression of proinflammatory cytokines expression, and inhibition of abnormal tau hyperphosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Derived data supporting the findings of this study are available from the corresponding author [HRS] on request.

References

  • Abed El-Gaphar OAM, Abo-Youssef AM, Halal GK (2018) Levetiracetam mitigates lipopolysaccharide-induced JAK2/STAT3 and TLR4/MAPK signaling pathways activation in a rat model of adjuvant- induced arthritis. Eur J Pharmacol 826:85–95

    Article  CAS  PubMed  Google Scholar 

  • Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16:2766–2778

    Article  CAS  PubMed  Google Scholar 

  • Alam Q, Alam MZ, Mushtaq G, Damanhouri GA, Rasool M, Kamal MA, Haque A (2016) Inflammatory Process in Alzheimer’s and Parkinson’s Diseases: Central Role of Cytokines. Curr Pharm Des 22:541–548

    Article  CAS  PubMed  Google Scholar 

  • Alrabiah H (2019) Levetiracetam. Profiles Drug Subst Excip Relat Methodol 44:167–204

    Article  CAS  PubMed  Google Scholar 

  • Amani M, Zolghadrnasab M, Salari AA (2019) NMDA receptor in the hippocampus alters neurobehavioral phenotypes through inflammatory cytokines in rats with sporadic Alzheimer-like disease. Physiol Behav 202:52–61

    Article  CAS  PubMed  Google Scholar 

  • Barilar JO, Knezovic A, Grünblatt E, Riederer P, Salkovic-Petrisic M (2015) Nine-month follow-up of the insulin receptor signalling cascade in the brain of streptozotocin rat model of sporadic Alzheimer’s disease. J Neural Transm (Vienna) 122:565–576

    Article  Google Scholar 

  • Barrientos RM, Kitt MM, Watkins LR, Maier SF (2015) Neuroinflammation in the normal aging hippocampus. Neuroscience 309:84–99

    Article  CAS  PubMed  Google Scholar 

  • Celikyurt IK, Ulak G, Mutlu O, Akar FY, Mulayim S, Erden F, Komsuoglu SS (2012) Positive impact of levetiracetam on emotional learning and memory in naive mice. Life Sci 90:185–189

    Article  CAS  PubMed  Google Scholar 

  • Chen XQ, Mobley WC (2019) Alzheimer disease pathogenesis: insights from molecular and cellular biology studies of oligomeric Aβ and tau species. Front Neurosci 13:659

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung HY, Sung B, Jung KJ, Zou Y, Yu BP (2006) The molecular inflammatory process in aging. Antioxid Redox Sign 8:572–581

    Article  CAS  Google Scholar 

  • Conway ME (2020) Alzheimer’s disease: targeting the glutamatergic system. Biogerontology 21:257–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA (2011) Insulin-resistant brain state: the culprit in sporadic Alzheimer’s disease? Ageing Res Rev 10:264–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Detrait E, Leclercq K, Löscher W, Potschka H, Niespodziany I, Hanon E, Kaminski R, Matagne A, Lamberty Y (2010) Brivaracetam does not alter spatial learning and memory in both normal and amygdala-kindled rats. Epilepsy Res 91:74–83

    Article  CAS  PubMed  Google Scholar 

  • Devi L, Ohno M (2013) Effects of levetiracetam, an antiepileptic drug, on memory impairments associated with aging and Alzheimer’s disease in mice. Neurobiol Learn Mem 102:7–11

    Article  CAS  PubMed  Google Scholar 

  • Ebada MA, Alkanj S, Ebada M, Abdelkarim AH, Diab A, Aziz MAE, Soliman AM, Fayed N, Bahbah EI, Negida A (2019) Safety and efficacy of levetiracetam for the management of levodopa- induced dyskinesia in patients with Parkinson’s disease: a systematic review. CNS Neurol Disord Drug Targets 18:317–325

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi K, Majdi A, Baghaiee B, Hosseini SH, Sadigh-Eteghad S (2017) Physical activity and beta-amyloid pathology in Alzheimer’s disease: A sound mind in a sound body. Excli J 16:959–972

    PubMed  PubMed Central  Google Scholar 

  • El Sayed NS, Ghoneum MH (2020) Antia, a natural antioxidant product, attenuates cognitive dysfunction in Streptozotocin-induced mouse model of sporadic Alzheimer’s disease by targeting the amyloidogenic, inflammatory, autophagy, and oxidative stress pathways. Oxid Med Cell Longev 2020:4386562

  • Elçioğlu H, Kabasakal L, Alan S, Salva E, Tufan F, Karan M (2013) Thalidomide attenuates learning and memory deficits induced by intracerebroventricular administration of streptozotocin in rats. Biotech Histochem 88:145–152

    Article  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Erbaş O, Yılmaz M, Taşkıran D (2016) Levetiracetam attenuates rotenone-induced toxicity: A rat model of Parkinson’s disease. Environ Toxicol Pharmacol 42:226–230

    Article  PubMed  Google Scholar 

  • Fanoudi S, Hosseini M, Alavi MS, Boroushaki MT, Hosseini A, Sadeghnia HR (2018) Everolimus, a mammalian target of rapamycin inhibitor, ameliorated streptozotocin-induced learning and memory deficits via neurochemical alterations in male rats. Excli J 17:999–1017

    PubMed  PubMed Central  Google Scholar 

  • Fanoudi S, Alavi MS, Hosseini M, Sadeghnia HR (2019) Nigella sativa and thymoquinone attenuate oxidative stress and cognitive impairment following cerebral hypoperfusion in rats. Metab Brain Dis 34:1001–1010

    Article  CAS  PubMed  Google Scholar 

  • Grieb P (2016) Intracerebroventricular streptozotocin injections as a model of Alzheimer’s disease: in search of a relevant mechanism. Mol Neurobiol 53:1741–1752

    Article  CAS  PubMed  Google Scholar 

  • Haghikia A, Ladage K, Hinkerohe D, Vollmar P, Heupel K, Dermietzel R, Faustmann PM (2008) Implications of antiinflammatory properties of the anticonvulsant drug levetiracetam in astrocytes. J Neurosci Res 86:1781–1788

    Article  CAS  PubMed  Google Scholar 

  • Hanon E, Klitgaard H (2001) Neuroprotective properties of the novel antiepileptic drug levetiracetam in the rat middle cerebral artery occlusion model of focal cerebral ischemia. Seizure 10:287–293

    Article  CAS  PubMed  Google Scholar 

  • Imai T, Sugiyama T, Iwata S, Nakamura S, Shimazawa M, Hara H (2020) Levetiracetam, an antiepileptic drug has neuroprotective effects on intracranial hemorrhage injury. Neurosci 431:25–33

    Article  CAS  Google Scholar 

  • Inaba T, Miyamoto N, Hira K, Ueno Y, Yamashiro K, Watanabe M, Shimada Y, Hattori N, Urabe T (2019) Protective role of levetiracetam against cognitive impairment and brain white matter damage in mouse prolonged cerebral Hypoperfusion. Neuroscience 414:255–264

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Ishihara Y, Komori R, Nochi H, Taniguchi R, Chiba Y, Ueno M, Takata-Tsuji F, Dohgu S, Kataoka Y (2016) Levetiracetam treatment influences blood-brain barrier failure associated with angiogenesis and inflammatory responses in the acute phase of epileptogenesis in post-status epilepticus mice. Brain Res 1652:1–13

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Taniguchi R, Matsuo T, Oguro A, Vogel CFA, Yamazaki T, Ishihara Y (2019) Suppressive effects of levetiracetam on neuroinflammation and phagocytic microglia: A comparative study of levetiracetam, valproate and carbamazepine. Neurosci Lett 708:134363

    Article  CAS  PubMed  Google Scholar 

  • Kim JE, Choi HC, Song HK, Jo SM, Kim DS, Choi SY, Kim YI, Kang TC (2010) Levetiracetam inhibits interleukin-1 beta inflammatory responses in the hippocampus and piriform cortex of epileptic rats. Neurosci Lett 471:94–99

    Article  CAS  PubMed  Google Scholar 

  • Lamberty Y, Margineanu DG, Klitgaard H (2000) Absence of negative impact of levetiracetam on cognitive function and memory in normal and amygdala-kindled rats. Epilepsy Behav 1:333–342

    Article  CAS  PubMed  Google Scholar 

  • Lamtai M, Azirar S, Zghari O, Ouakki S, El Hessni A, Mesfioui A, Ouichou A (2021) Melatonin Ameliorates Cadmium-Induced Affective and Cognitive Impairments and Hippocampal Oxidative Stress in Rat. Biol Trace Elem Res 199:1445–1455

    Article  CAS  PubMed  Google Scholar 

  • Lasierra-Cirujeda J, Coronel P, Aza M, Gimeno M (2013) Beta-amyloidolysis and glutathione in Alzheimer’s disease. J Blood Med 4:31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Kim YH, Park SJ, Huh JW, Kim SH, Kim SU, Kim JS, Jeong KJ, Lee KM, Hong Y (2014) Insulin/IGF signaling-related gene expression in the brain of a sporadic Alzheimer’s disease monkey model induced by intracerebroventricular injection of streptozotocin. J Alzheimer’s Dis 38:251–267

    Article  Google Scholar 

  • Lyseng-Williamson KA (2011) Levetiracetam: a review of its use in epilepsy. Drugs 71:489–514

    CAS  PubMed  Google Scholar 

  • Marini H, Costa C, Passaniti M, Esposito M, Campo GM, Ientile R, Adamo EB, Marini R, Calabresi P, Altavilla D, Minutoli L, Pisani F, Squadrito F (2004) Levetiracetam protects against kainic acid-induced toxicity. Life Sci 74:1253–1264

    Article  CAS  PubMed  Google Scholar 

  • Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer’s disease. Nat Rev Dis Primers 1:15056

    Article  PubMed  Google Scholar 

  • Miyazaki I, Murakami S, Torigoe N, Kitamura Y, Asanuma M (2016) Neuroprotective effects of levetiracetam target xCT in astrocytes in parkinsonian mice. J Neurochem 136:194–204

    Article  CAS  PubMed  Google Scholar 

  • Mohammad HMF, Sami MM, Makary S, Toraih EA, Mohamed AO, El-Ghaiesh SH (2019) Neuroprotective effect of levetiracetam in mouse diabetic retinopathy: Effect on glucose transporter-1 and GAP43 expression. Life Sci 232:116588

    Article  CAS  PubMed  Google Scholar 

  • Moran SP, Dickerson JW, Cho HP, Xiang Z, Maksymetz J, Remke DH, Lv X, Doyle CA, Rajan DH, Niswender CM, Engers DW, Lindsley CW, Rook JM, Conn PJ (2018) M(1)-positive allosteric modulators lacking agonist activity provide the optimal profile for enhancing cognition. Neuropsychopharmacol 43:1763–1771

    Article  CAS  Google Scholar 

  • Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    Article  CAS  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  • Muller AP, Ferreira GK, Pires AJ, de Bem Silveira G, de Souza DL, de Abreu Brandolfi J, de Souza CT, Paula MM, Silveira PCL (2017) Gold nanoparticles prevent cognitive deficits, oxidative stress and inflammation in a rat model of sporadic dementia of Alzheimer’s type. Mater Sci Eng C 77:476–483

    Article  CAS  Google Scholar 

  • Niu HX, Wang JZ, Wang DL, Miao JJ, Li H, Liu ZG, Yuan X, Liu W, Zhou JR (2018) The Orally Active Noncompetitive AMPAR Antagonist Perampanel Attenuates Focal Cerebral Ischemia Injury in Rats. Cell Mol Neurobiol 38:459–466

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AA, Nogueira CR, Nascimento VS, Aguiar LM, Freitas RM, Sousa FC, Viana GS, Fonteles MM (2005) Evaluation of levetiracetam effects on pilocarpine-induced seizures: cholinergic muscarinic system involvement. Neurosci Lett 385:184–188

    Article  CAS  PubMed  Google Scholar 

  • Paula-Lima AC, De Felice FG, Brito-Moreira J, Ferreira ST (2005) Activation of GABAA receptors by taurine and muscimol blocks the neurotoxicity of β-amyloid in rat hippocampal and cortical neurons. Neuropharmacol 49:1140–1148

    Article  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) A stereotaxic atlas of the rat brain. Academic, New York

    Google Scholar 

  • Pilipenko V, Pupure J, Rumaks J, Beitnere U, Dzirkale Z, Skumbins R, Klusa V (2015) GABAA agonist muscimol ameliorates learning/memory deficits in streptozocin-induced Alzheimer’s disease non-transgenic rat model. SpringerPlus 4:P36

    Article  PubMed Central  Google Scholar 

  • Rai S, Kamat PK, Nath C, Shukla R (2013) A study on neuroinflammation and NMDA receptor function in STZ (ICV) induced memory impaired rats. J Neuroimmunol 254:1–9

    Article  CAS  PubMed  Google Scholar 

  • Rajabian A, Sadeghnia HR, Hosseini A, Mousavi SH, Boroushaki MT (2020) 3-Acetyl-11-keto-β-boswellic acid attenuated oxidative glutamate toxicity in neuron-like cell lines by apoptosis inhibition. J Cell Biochem 121:1778–1789

    Article  CAS  PubMed  Google Scholar 

  • Rajasekar N, Nath C, Hanif K, Shukla R (2017) Intranasal insulin administration ameliorates streptozotocin (ICV)-induced insulin receptor dysfunction, neuroinflammation, amyloidogenesis, and memory impairment in rats. Mol Neurobiol 54:6507–6522

    Article  CAS  PubMed  Google Scholar 

  • Ravelli KG, dos Anjos Rosário B, Camarini R, Hernandes MS, Britto LR (2017) Intracerebroventricular streptozotocin as a model of Alzheimer’s disease: neurochemical and behavioral characterization in mice. Neurotoxicity Res 31:327–333

    Article  CAS  Google Scholar 

  • Reeta KH, Mehla J, Gupta YK (2009) Curcumin is protective against phenytoin-induced cognitive impairment and oxidative stress in rats. Brain Res 1301:52–60

    Article  CAS  PubMed  Google Scholar 

  • Sanchez PE, Zhu L, Verret L, Vossel KA, Orr AG, Cirrito JR, Devidze N, Ho K, Yu G-Q, Palop JJ (2012) Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci 109:E2895–E2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563

    Article  CAS  PubMed  Google Scholar 

  • Schoenberg MR, Rum RS, Osborn KE, Werz MA (2017) A randomized, double-blind, placebo‐controlled crossover study of the effects of levetiracetam on cognition, mood, and balance in healthy older adults. Epilepsia 58:1566–1574

    Article  CAS  PubMed  Google Scholar 

  • Shannon HE, Love PL (2004) Effects of antiepileptic drugs on working memory as assessed by spatial alternation performance in rats. Epilepsy Behav 5:857–865

    Article  PubMed  Google Scholar 

  • Sharma Y, Garabadu D (2020) Intracerebroventricular streptozotocin administration impairs mitochondrial calcium homeostasis and bioenergetics in memory-sensitive rat brain regions. Exp Brain Res 238:2293–2306

    Article  CAS  PubMed  Google Scholar 

  • Shi JQ, Shen W, Chen J, Wang BR, Zhong LL, Zhu YW, Zhu HQ, Zhang QQ, Zhang YD, Xu J (2011) Anti-TNF-α reduces amyloid plaques and tau phosphorylation and induces CD11c-positive dendritic-like cell in the APP/PS1 transgenic mouse brains. Brain Res 1368:239–247

    Article  CAS  PubMed  Google Scholar 

  • Shi JQ, Wang BR, Tian YY, Xu J, Gao L, Zhao SL, Jiang T, Xie HG, Zhang YD (2013) Antiepileptics topiramate and levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice. CNS Neurosci Ther 19:871–881

    Article  PubMed  PubMed Central  Google Scholar 

  • Sola I, Aso E, Frattini D, López-González I, Espargaró A, Sabaté R, Di Pietro O, Luque FJ, Clos MV, Ferrer I, Muñoz-Torrero D (2015) Novel levetiracetam derivatives that are effective against the Alzheimer-like phenotype in mice: synthesis, in vitro, ex vivo, and in vivo efficacy studies. J Med Chem 58:6018–6032

    Article  CAS  PubMed  Google Scholar 

  • Stienen MN, Haghikia A, Dambach H, Thöne J, Wiemann M, Gold R, Chan A, Dermietzel R, Faustmann PM, Hinkerohe D, Prochnow N (2011) Anti-inflammatory effects of the anticonvulsant drug levetiracetam on electrophysiological properties of astroglia are mediated via TGFβ1 regulation. Br J Pharmacol 162:491–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuchbury G, Münch G (2005) Alzheimer’s associated inflammation, potential drug targets and future therapies. J Neural Transm (Vienna) 112:429–453

    Article  CAS  Google Scholar 

  • Tan J, Paquette V, Levine M, Ensom MHH (2017) Levetiracetam clinical pharmacokinetic monitoring in pediatric patients with epilepsy. Clin Pharmacokinet 56:1267–1285

    Article  CAS  PubMed  Google Scholar 

  • Trikash I, Kasatkina L, Lykhmus O, Skok M (2020) Nicotinic acetylcholine receptors regulate clustering, fusion and acidification of the rat brain synaptic vesicles. Neurochem Int 138:104779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda Y, Doi T, Nagatomo K, Tokumaru J, Takaki M, Willmore LJ (2007) Effect of levetiracetam on molecular regulation of hippocampal glutamate and GABA transporters in rats with chronic seizures induced by amygdalar FeCl3 injection. Brain Res 1151:55–61

    Article  CAS  PubMed  Google Scholar 

  • Vafaee F, Hosseini M, Hassanzadeh Z, Edalatmanesh MA, Sadeghnia HR, Seghatoleslam M, Mousavi SM, Amani A, Shafei MN (2015) The effects of nigella sativa hydro-alcoholic extract on memory and brain tissues oxidative damage after repeated seizures in rats. Iran J Pharm Res 14:547–557

    PubMed  PubMed Central  Google Scholar 

  • Varoglu AO, Yildirim A, Aygul R, Gundogdu OL, Sahin YN (2010) Effects of valproate, carbamazepine, and levetiracetam on the antioxidant and oxidant systems in epileptic patients and their clinical importance. Clin Neuropharmacol 33:155–157

    Article  CAS  PubMed  Google Scholar 

  • Verloes R, Scotto A-M, Gobert J, Wülfert E (1988) Effects of nootropic drugs in a scopolamine-induced amnesia model in mice. Psychopharmacology 95:226–230

    Article  CAS  PubMed  Google Scholar 

  • Vogl C, Mochida S, Wolff C, Whalley BJ, Stephens GJ (2012) The synaptic vesicle glycoprotein 2A ligand levetiracetam inhibits presynaptic Ca2+ channels through an intracellular pathway. Mol Pharmacol 82:199–208

    Article  CAS  PubMed  Google Scholar 

  • Wang MJ, Jiang L, Chen HS, Cheng L (2019) Levetiracetam protects against cognitive impairment of subthreshold convulsant discharge model rats by activating Protein Kinase C (PKC)-Growth-Associated Protein 43 (GAP-43)-Calmodulin-Dependent Protein Kinase (CaMK) signal transduction pathway. Med Sci Monit 25:4627–4638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao R (2016) Levetiracetam might act as an efficacious drug to attenuate cognitive deficits of Alzheimer’s disease. Curr Top Med Chem 16:565–573

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Gao H, Zhang L, Rong S, Yang W, Ma C, Chen M, Huang Q, Deng Q, Huang F (2019) Melatonin alleviates cognition impairment by antagonizing brain insulin resistance in aged rats fed a high-fat diet. J pineal Res 67:e12584

    Article  PubMed  Google Scholar 

  • Yeo HG, Lee Y, Jeon C-Y, Jeong KJ, Jin YB, Kang P, Kim SU, Kim JS, Huh JW, Kim YH (2015) Characterization of cerebral damage in a monkey model of Alzheimer’s disease induced by intracerebroventricular injection of streptozotocin. J Alzheimer’s Dis 46:989–1005

    Article  CAS  Google Scholar 

  • Zou H, Brayer SW, Hurwitz M, Niyonkuru C, Fowler LE, Wagner AK (2013) Neuroprotective, neuroplastic, and neurobehavioral effects of daily treatment with levetiracetam in experimental traumatic brain injury. Neurorehabil Neural Repair 27:878–888

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Institute for Medical Research Development (NIMAD) of Islamic Republic of Iran [grant number 963629] and Vice Chancellery for Research and Technology, Mashhad University of Medical Sciences [grant number 4000621].

Author information

Authors and Affiliations

Authors

Contributions

HRS conceived and designed the study. MSA and SF collected the data and performed the data analysis under the supervision of HRS and MH. MSA and SF wrote the manuscript. HRS and MH revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hamid R. Sadeghnia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

All animal experiments were conducted according to the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals, and the protocol was approved by the Institutional Animal Ethics Committee of Mashhad University of Medical Sciences, Mashhad, Iran.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, M.S., Fanoudi, S., Hosseini, M. et al. Beneficial effects of levetiracetam in streptozotocin-induced rat model of Alzheimer’s disease. Metab Brain Dis 37, 689–700 (2022). https://doi.org/10.1007/s11011-021-00888-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-021-00888-0

Keywords

Navigation