Skip to main content
Log in

Emerging concepts on the FGF23 regulation and activity

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Fibroblast growth factor 23 (FGF23) discovery has provided new insights into the regulation of Pi and Ca homeostasis. It is secreted by osteoblasts and osteocytes, and acts mainly in the kidney, parathyroid, heart, and bone. The aim of this review is to highlight the current knowledge on the factors modulating the synthesis of FGF23, the canonical and non-canonical signaling pathways of the hormone, the role of FGF23 in different pathophysiological conditions, and the anti-FGF23 therapy. This is a narrative review based on the search of PubMed database in the range of years 2000–2023 using the keywords local and systemic regulators of FGF23 synthesis, FGF23 receptors, canonical and non-canonical pathways, pathophysiological conditions and FGF23, and anti-FGF23 therapy, focusing the data on the molecular mechanisms. The regulation of FGF23 synthesis is complex and multifactorial. It is regulated by local factors and systemic regulators mainly involved in bone mineralization. The excessive FGF23 production is associated with different congenital diseases and with diseases occurring with a secondary high FGF23 production such as in chronic disease kidney and tumor-induced osteomalacia (TIO). The anti-FGF23 therapy appears to be useful to treat chromosome X-linked hypophosphatemia and TIO, but there are doubts about the handle of excessive FGF23 production in CKD. FGF23 biochemistry and pathophysiology are generating a plethora of knowledge to reduce FGF23 bioactivity at many levels that might be useful for future therapeutics of diseases associated with high-serum FGF23 levels.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

1,25(OH)2D3:

1,25-Dihydroxyvitamin D

ADHR:

Autosomal-dominant hereditary rickets

BMD:

Bone mineral density

Ca:

Calcium

cFGF23:

C-terminal FGF23

CKD:

Chronic kidney disease

DMP1:

Dentin matrix protein 1

EPO:

Erythropoietin

ERK1/2:

Extracellular signal-regulated kinases 1/2

ESRD:

End-stage renal disease

FGFR:

FGF receptor

FGFR1:

FGF receptor 1

GalNT3:

N-acetylgalactosaminyltransferase 3

HIF:

Hypoxia-inducible factor

iFGF23:

Intact FGF23

LVH:

Left ventricular hypertrophy

NFAT:

Nuclear factor of activated T-cells

OB:

Osteoblasts

oc:

Osteocytes

PHEX:

Pi-regulating gene homologous to endopeptidase on X chromosome

Pi:

Phosphate

SGK1:

Serum/glucocorticoid-regulated kinase-1

TIO:

Tumor-induced osteomalacia

TNAP:

Non-tissue-specific alkaline phosphatase

TRPV5:

Transient receptor potential vanilloid 5

VC:

Vascular calcifications

VDR:

Vitamin D receptor

XLH:

Chromosome X-linked hypophosphatemia

Αkl:

αKlotho

References

  1. Vervloet M (2019) Renal and extrarenal effects of fibroblast growth factor 23. Nat Rev Nephrol 15(2):109–120. https://doi.org/10.1038/s41581-018-0087-2

    Article  CAS  PubMed  Google Scholar 

  2. Murali SK, Roschger P, Zeitz U, Andrukhova KK, Erben ORG (2016) FGF23 regulates bone mineralization in a 1,25(OH)2D3 and klotho-independent manner. J Bone Miner Res 31(1):129–142. https://doi.org/10.1002/jbmr.2606

    Article  CAS  PubMed  Google Scholar 

  3. Rausch S, Foller M (2022) The regulation of FGF23 under physiological and pathophysiological conditions. Pfügers Archiv Eur J Physiol 474:281–292. https://doi.org/10.1007/s00424-022-02668-w

    Article  CAS  Google Scholar 

  4. Yamashita T, Yoshioka M, Itoh N (2000) Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 277:494–498. https://doi.org/10.1006/bbrc.2000.3696

    Article  CAS  PubMed  Google Scholar 

  5. ADHR-CONSORTIUM (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345–348. https://doi.org/10.1038/81664

    Article  CAS  Google Scholar 

  6. Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 98:6500–6505. https://doi.org/10.1073/pnas.101545198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, Fujita T, Wada M, Yamashita T, Fukumoto S, Shimada T (2009) Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J Bone Miner Res 24(11):1879–1888. https://doi.org/10.1359/jbmr.090509

    Article  CAS  PubMed  Google Scholar 

  8. Kritmetapak K, Kumar R (2023) Phosphatonins: from discovery to therapeutics. Endocr Pract 29(1):69–79. https://doi.org/10.1016/j.eprac.2022.09.007

    Article  PubMed  Google Scholar 

  9. Isakova T, Cai X, Lee J, Mehta R, Zhang X, Yang W, Nessel L, Anderson AH, Lo J, Porter A, Nunes JW, Negrea L, Hamm L, Horwitz E, Chen J, Scialla JJ, de Boer IH, Leonard MB, Feldman HI, Wolf M (2020) Longitudinal evolution of markers of mineral metabolism in patients with CKD: the chronic renal insufficiency cohort (CRIC) study. Am J Kidney Dis 75:235–244. https://doi.org/10.1053/j.ajkd.2019.07.022

    Article  CAS  PubMed  Google Scholar 

  10. Bergwitz C, Jüppner H (2010) Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med 61:91–104. https://doi.org/10.1146/annurev.med.051308.111339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ritter CS, Zhang S, Delmez J, Finch JL, Slatopolsky E (2015) Differential expression and regulation of Klotho by paricalcitol in the kidney, parathyroid, and aorta of uremic rats. Kidney Int 87:1141–1152. https://doi.org/10.1038/ki.2015.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Quarles LD (2019) Fibroblast growth factor 23 and α-Klotho co-dependent and independent functions. Curr Opin Nephrol Hypertens 28(1):16–25. https://doi.org/10.1097/MNH.0000000000000467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Michigami T (2022) Roles of osteocytes in phosphate metabolism. Front Endocrinol 13:967774. https://doi.org/10.3389/fendo.2022.967774

    Article  Google Scholar 

  14. Noonan ML, White KE (2019) FGF23 synthesis and activity. Curr Mol Biol Rep 5(1):18–25. https://doi.org/10.1007/s40610-019-0111-8

    Article  PubMed  PubMed Central  Google Scholar 

  15. Leifheit-Nestler M, Grabner A, Hermann L, Richter B, Schmitz K, Fischer DC, Yanucil C, Faul C, Haffner D (2017) Vitamin D treatment attenuates cardiac FGF23/FGFR4 signaling and hypertrophy in uremic rats. Nephrol Dial Transplant 32:1493–1503. https://doi.org/10.1093/ndt/gfw454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matsui I, Oka T, Kusunoki Y, Mori D, Hashimoto N, Matsumoto A, Shimada K, Yamaguchi S, Kubota K, Yonemoto S, Higo T, Sakaguchi Y, Takabatake Y, Hamano T, Isaka Y (2018) Cardiac hypertrophy elevates serum levels of fibroblast growth factor 23. Kidney Int 94:60–71. https://doi.org/10.1016/j.kint.2018.02.018

    Article  CAS  PubMed  Google Scholar 

  17. Yamazaki Y, Tamada T, Kasai N, Urakawa I, Aono Y, Hasegawa H, Fujita T, Kuroki R, Yamashita T, Fukumoto S, Shimada T (2008) Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J Bone Miner Res 23(9):1509–1518. https://doi.org/10.1359/jbmr.080417

    Article  CAS  PubMed  Google Scholar 

  18. Richter B, Faul C (2018) FGF23 actions on target tissues-with and without Klotho. Front Endocrinol 9:189. https://doi.org/10.3389/fendo.2018.00189

    Article  Google Scholar 

  19. White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ (2001) Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 60(6):2079–2086. https://doi.org/10.1046/j.1523-1755.2001.00064.x

    Article  CAS  PubMed  Google Scholar 

  20. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutierrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-O M, Kusek JW, Keane MG, Wolf M (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121(11):4393–4408. https://doi.org/10.1172/JCI46122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tagliabracci V, Engel JL, Wiley SE, Xiao J, Gonzalez DJ, Nidumanda Appaiah H, Koller A, Nizet V, White KE, Dixon JE (2014) Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci USA 111(15):5520–5525. https://doi.org/10.1073/pnas.1402218111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ho BB, Bergwitz C (2021) FGF23 Signalling and physiology. J Mol Endocrinol 66(2):R23–R32. https://doi.org/10.1530/JME-20-0178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chande S, Bergwitz C (2018) Role of phosphate sensing in bone and mineral metabolism. Nat Rev Endocrinol 14:637–655. https://doi.org/10.1038/s41574-018-0076-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goetz R, Beenken A, Ibrahimi OA, Kalinina J, Olsen SK, Eliseenkova AV, Xu C, Neubert TA, Zhang F, Linhardt RJ, Yu X, White KE, Inagaki T, Kliewer SA, Yamamoto M, Kurosu H, Ogawa Y, Kuo-o M, Lanske B, Razzaque MS, Mohammadi M (2007) Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Moll Cell Biol 27:3417–3428. https://doi.org/10.1128/MCB.02249-06

    Article  CAS  Google Scholar 

  25. Kato K, Jeanneau C, Tarp MA, Benet-Pagès A, Lorenz-Depiereux B, Bennett EP, Mandel U, Strom TM, Clausen H (2006) Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J Biol Chem 281:18370–18377. https://doi.org/10.1074/jbc.M602469200

    Article  CAS  PubMed  Google Scholar 

  26. Ichikawa S, Imel EA, Sorenson AH, Severe R, Knudson P, Harris GJ, Shaker JL, Econs MJ (2006) Tumoral calcinosis presenting with eyelid calcifications due to novel missense mutations in the glycosyl transferase domain of the GALNT3 gene. J Clin Endocrinol Metab 91(11):4472–4475. https://doi.org/10.1210/jc.2006-1247

    Article  CAS  PubMed  Google Scholar 

  27. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51. https://doi.org/10.1038/36285

    Article  CAS  PubMed  Google Scholar 

  28. Komaba H, Kaludjerovic J, Hu DZ, Nagano K, Amano K, Ide N, Sato T, Densmore MJ, Hanai JI, Olauson H, Bellido T, Larsson TE, Baron R, Lanske B (2017) Klotho expression in osteocytes regulates bone metabolism and controls bone formation. Kidney Int 92(3):599–611. https://doi.org/10.1016/j.kint.2017.02.014

    Article  CAS  PubMed  Google Scholar 

  29. Shiraki-Iida T, Aizawa H, Matsumura Y, Sekine S, Iida A, Anazawa H, Nagai R, Kuro-o M, Nabeshima Y (1998) Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett 424(1–2):6–10. https://doi.org/10.1016/s0014-5793(98)00127-6

    Article  CAS  PubMed  Google Scholar 

  30. Navarro-García JA, Fernández-Velasco M, Delgado C, Delgado JF, Kuro-o M, Ruilope LM, Ruiz-Hurtado G (2018) PTH, vitamin D, and the FGF-23-klotho axis and heart: going beyond the confines of nephrology. Eur J Clin Invest. https://doi.org/10.1111/eci.12902

    Article  PubMed  Google Scholar 

  31. Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2(3):3005. https://doi.org/10.1186/gb-2001-2-3-reviews3005

    Article  Google Scholar 

  32. Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10(2):116–129. https://doi.org/10.1038/nrc2780

    Article  CAS  PubMed  Google Scholar 

  33. Goetz R, Ohnishi M, Kir S, Kurosu H, Wang L, Pastor J, Ma J, Gai W, Kuro-o M, Razzaque MS, Mohammadi M (2012) Conversion of a paracrine fibroblast growth factor into an endocrine fibroblast growth factor. J Biol Chem 287(34):29134–29146. https://doi.org/10.1074/jbc.M112.342980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Suzuki Y, Kuzina E, An SJ, Tome F, Mohanty F, Li W, Lee S, Liu Y, Lax I, Schlessinger J (2020) FGF23 contains two distinct high-affinity binding sites enabling bivalent interactions with α-Klotho. Proc Natl Acad Sci USA 117(50):31800–31807. https://doi.org/10.1073/pnas.2018554117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yanucil C, Kentrup D, Campos I, Czaya B, Heitman K, Westbrook D, Osis G, Grabner A, Wende AR, Vallejo J, Wacker MJ, Navarro-Garcia JA, Ruiz-Hurtado G, Zhang F, Song Y, Linhardt RJ, White K, Kapiloff MS, Faul C (2022) Soluble α-klotho and heparin modulate the pathologic cardiac actions of fibroblast growth factor 23 in chronic kidney disease. Kidney Int 102(2):261–279. https://doi.org/10.1016/j.kint.2022.03.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miyagawa K, Yamazaki M, Kawai M, Nishino J, Koshimizu T, Ohata Y, Tachikawa K, Mikuni-Takagaki Y, Kogo M, Ozono K, Michigami T (2014) Dysregulated gene expression in the primary osteoblasts and osteocytes isolated from hypophosphatemic hyp mice. PLoS ONE 9(4):e93840. https://doi.org/10.1371/journal.pone.0093840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dussold C, Gerber C, White S, Wang X, Qi L, Francis C, Capella M, Courbon G, Wang J, Li C, Feng JQ, Isakova T, Wolf M, David V, Martin A (2019) DMP1 prevents osteocyte alterations, FGF23 elevation and left ventricular hypertrophy in mice with chronic kidney disease. Bone Res 7:12. https://doi.org/10.1038/s41413-019-0051-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martin A, Liu S, David V, Li H, Karydis A, Feng JQ, Quarles LD (2011) Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J 25(8):2551–2562. https://doi.org/10.1096/fj.10-177816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu C, Zhang H, Jani P, Wang X, Lu Y, Li N, Xiao J, Qin C (2018) FAM20C regulates osteoblast behaviors and intracellular signaling pathways in a cell-autonomous manner. J Cell Physiol 233(4):3476–3486. https://doi.org/10.1002/jcp.26200

    Article  CAS  PubMed  Google Scholar 

  40. Ito N, Prideaux M, Wijenayaka AR, Yang D, Ormsby RT, Bonewald LF, Atkins GJ (2021) Sclerostin directly stimulates osteocyte synthesis of fibroblast growth factor-23. Calcif Tissue Int 109(1):66–76. https://doi.org/10.1007/s00223-021-00823-6

    Article  CAS  PubMed  Google Scholar 

  41. Razzaque MS (2022) Interactions between FGF23 and vitamin D. Endocr Connect 11(10):e220239. https://doi.org/10.1530/EC-22-0239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zittermann A, Berthold HK, Pilz S (2021) The effect of vitamin D on fibroblast growth factor 23: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 75:980–987. https://doi.org/10.1038/s41430-020-00725-0

    Article  CAS  PubMed  Google Scholar 

  43. Meshkini F, Soltani S, Clark CCT, Tam V, Meyre D, Toupchian O, Saraf-Bank S, Abdollahi S (2022) The effect of vitamin D supplementation on serum levels of fibroblast growth factor-23: a systematic review and meta-analysis of randomized controlled trials. J Steroid Biochem Mol Biol 215:106012. https://doi.org/10.1016/j.jsbmb.2021.106012

    Article  CAS  PubMed  Google Scholar 

  44. Kolek OI, Hines ER, Jones MD, LeSueur LK, Lipko MA, Kiela PR, Collins JF, Haussler MR, Ghishan FK (2005) 1alpha,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289(6):G1036–G1042. https://doi.org/10.1152/ajpgi.00243.2005

    Article  CAS  PubMed  Google Scholar 

  45. Masuyama R, Stockmans I, Torrekens S, Van Looveren R, Maes C, Carmeliet P, Bouillon R, Carmeliet G (2006) Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest 116(12):3150–3159. https://doi.org/10.1172/JCI29463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nguyen-Yamamoto L, Karaplis AC, St-Arnaud R, Goltzman D (2017) Fibroblast growth factor 23 regulation by systemic and local osteoblast-synthesized 1,25-dihydroxyvitamin D. J Am Soc Nephrol 28(2):586–597. https://doi.org/10.1681/ASN.2016010066

    Article  CAS  PubMed  Google Scholar 

  47. Saji F, Shigematsu T, Sakaguchi T, Ohya M, Orita H, Maeda Y, Ooura M, Mima T, Negi S (2010) Fibroblast growth factor 23 production in bone is directly regulated by 1{alpha},25-dihydroxyvitamin D, but not PTH. Am J Physiol Renal Physiol 299(5):F1212–F1217. https://doi.org/10.1152/ajprenal.00169.2010

    Article  CAS  PubMed  Google Scholar 

  48. Lanske B, Razzaque MS (2014) Molecular interactions of FGF23 and PTH in phosphate regulation. Kidney Int 86(6):1072–1074. https://doi.org/10.1038/ki.2014.316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kobayashi K, Imanishi Y, Miyauchi A, Onoda N, Kawata T, Tahara H, Goto H, Miki T, Ishimura E, Sugimoto T, Ishikawa T, Inaba M, Nishizawa Y (2006) Regulation of plasma fibroblast growth factor 23 by calcium in primary hyperparathyroidism. Eur J Endocrinol 154(1):93–99. https://doi.org/10.1530/eje.1.02053

    Article  CAS  PubMed  Google Scholar 

  50. Yamashita H, Yamashita T, Miyamoto M, Shigematsu T, Kazama JJ, Shimada T, Yamazaki Y, Fukumoto S, Fukagaw M, Noguchi S (2004) Fibroblast growth factor (FGF)-23 in patients with primary hyperparathyroidism. Eur J Endocrinol 151(1):55–60. https://doi.org/10.1530/eje.0.1510055

    Article  CAS  PubMed  Google Scholar 

  51. Knab VM, Corbin B, Andrukhova O, Hum JM, Ni P, Rabadi S, Maeda A, White KE, Erben RG, Jüppner H, Christov M (2017) Acute parathyroid hormone injection increases C-terminal but not intact fibroblast growth factor 23 levels. Endocrinology 158(5):1130–1139. https://doi.org/10.1210/en.2016-1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Onal M, Carlson AH, Thostenson JD, Benkusky NA, Meyer MB, Lee SM, Pike JW (2018) A novel distal enhancer mediates inflammation-, PTH-, and early onset murine kidney disease-induced expression of the mouse Fgf23 gene. JBMR Plus 2(1):32–47. https://doi.org/10.1002/jbm4.10023

    Article  CAS  PubMed  Google Scholar 

  53. Wolf M (2010) Forging forward with 10 burning questions on FGF23 in kidney disease. J Am Soc Nephrol 21(9):1427–1435. https://doi.org/10.1681/asn.2009121293

    Article  CAS  PubMed  Google Scholar 

  54. Mace ML, Olgaard K, Lewin E (2020) New aspects of the kidney in the regulation of fibroblast growth factor 23 (FGF23) and mineral homeostasis. Int J Mol Sci 21(22):8810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I, Oshima T, Ono K, Kakitani M, Tomizuka K, Fujita T, Fukumoto S, Yamashita T (2005) Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Renal Physiol 289(5):F1088-1095. https://doi.org/10.1152/ajprenal.00474.2004

    Article  CAS  PubMed  Google Scholar 

  56. Rodriguez-Ortiz ME, Lopez I, Muñoz-Castañeda JR, Martinez-Moreno JM, Peralta Ramírez A, Pineda C, Canalejo A, Jaeger P, Aguilera-Tejero E, Rodriguez M, Felsenfeld A, Almaden Y (2012) Calcium deficiency reduces circulating levels of FGF23. J Am Soc Nephrol 23(7):1190–1197. https://doi.org/10.1681/ASN.2011101006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. David V, Dai B, Martin A, Huang J, Han X, Quarles LD (2013) Calcium regulates FGF-23 expression in bone. Endocrinology 154(12):4469–4482. https://doi.org/10.1210/en.2013-1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Quinn SJ, Thomsen AR, Pang JL, Kantham L, Bräuner-Osborne H, Pollak M, Goltzman D, Brown EM (2013) Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo. Am J Physiol Endocrinol Metab 304(3):E310-320. https://doi.org/10.1152/ajpendo.00460.2012

    Article  CAS  PubMed  Google Scholar 

  59. Akiyama KI, Miura Y, Hayashi H, Sakata A, Matsumura Y, Kojima M, Tsuchiya K, Nitta K, Shiizaki K, Kurosu H, Kuro-o M (2020) Calciprotein particles regulate fibroblast growth factor-23 expression in osteoblasts. Kidney Int 97(4):702–712. https://doi.org/10.1016/j.kint.2019.10.019

    Article  CAS  PubMed  Google Scholar 

  60. Thein OS, Ali NA, Mahida RY, Dancer RCA, Ostermann M, Amrein K, Martucci G, Scott A, Thickett DR, Parekh D (2023) Raised FGF23 correlates to increased mortality in critical illness, independent of Vitamin D. Biology (Basel) 12(2):309. https://doi.org/10.3390/biology12020309

    Article  CAS  PubMed  Google Scholar 

  61. Perwad F, Azam N, Zhang MY, Yamashita T, Tenenhouse HS, Portale AA (2005) Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 146(12):5358–5864. https://doi.org/10.1210/en.2005-0777

    Article  CAS  PubMed  Google Scholar 

  62. Nishida Y, Taketani Y, Yamanaka-Okumura H, Imamura F, Taniguchi A, Sato T, Shuto E, Nashiki K, Arai H, Yamamoto H, Takeda E (2006) Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int 70(12):2141–2147. https://doi.org/10.1038/sj.ki.5002000

    Article  CAS  PubMed  Google Scholar 

  63. Antoniucci DM, Yamashita T, Portale AA (2006) Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab 91(8):3144–3149. https://doi.org/10.1210/jc.2006-0021

    Article  CAS  PubMed  Google Scholar 

  64. Larsson T, Nisbeth U, Ljunggren O, Jüppner H, Jonsson KB (2003) Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 64(6):2272–2279. https://doi.org/10.1046/j.1523-1755.2003.00328.x

    Article  CAS  PubMed  Google Scholar 

  65. Tsai WC, Wu HY, Peng YS, Hsu SP, Chiu YL, Yang JY, Chen HY, Pai MF, Lin WY, Hung KY, Chu FY, Tsai SM, Chien KL (2019) Short-term effects of very-low-phosphate and low-phosphate diets on fibroblast growth factor 23 in hemodialysis patients: a randomized crossover trial. Clin J Am Soc Nephrol 14(10):1475–1483. https://doi.org/10.2215/CJN.04250419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Isakova T, Gutiérrez OM, Smith K, Epstein M, Keating LK, Jüppner H, Wolf M (2011) Pilot study of dietary phosphorus restriction and phosphorus binders to target fibroblast growth factor 23 in patients with chronic kidney disease. Nephrol Dial Transplant 26(2):584–591. https://doi.org/10.1093/ndt/gfq419

    Article  CAS  PubMed  Google Scholar 

  67. Oliveira RB, Cancela AL, Graciolli FG, Dos Reis LM, Draibe SA, Cuppari L, Carvalho AB, Jorgetti V, Canziani ME, Moysés RM (2010) Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin J Am Soc Nephrol 5(2):286–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Memmos E, Papagianni A (2021) New insights into the role of FGF-23 and Klotho in cardiovascular disease in chronic kidney disease patients. Curr Vasc Pharmacol 19(1):55–62. https://doi.org/10.2174/1570161118666200420102100

    Article  CAS  PubMed  Google Scholar 

  69. Hori M, Kinoshita Y, Taguchi M, Fukumoto S (2016) Phosphate enhances Fgf23 expression through reactive oxygen species in UMR-106 cells. J Bone Miner Metab 34(2):132–139. https://doi.org/10.1007/s00774-015-0651-9

    Article  CAS  PubMed  Google Scholar 

  70. Heijboer AC, Cavalier E (2023) The measurement and interpretation of fibroblast growth factor 23 (FGF23) concentrations. Calcif Tissue Int 112(2):258–270. https://doi.org/10.1007/s00223-022-00987-9

    Article  CAS  PubMed  Google Scholar 

  71. Kato H, Miyazaki H, Kimura T, Hoshino Y, Hidaka N, Koga M, Nangaku M, Makita N, Ito N (2023) Clinical performance of a new intact FGF23 immunoassay in healthy individuals and patients with chronic hypophosphatemia. Bone Rep 18:101659. https://doi.org/10.1016/j.bonr.2023.101659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bouma-de Krijger A, Vervloet MG (2020) Fibroblast growth factor 23: are we ready to use it in clinical practice? J Nephrol 33(3):509–527. https://doi.org/10.1007/s40620-020-00715-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pons-Belda OD, Alonso-Álvarez MA, González-Rodríguez JD, Mantecón-Fernández L, Santos-Rodríguez F (2023) Mineral metabolism in children: interrelation between vitamin D and FGF23. Int J Mol Sci 24(7):6661. https://doi.org/10.3390/ijms24076661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lerch C, Shroff R, Wan M, Rees L, Aitkenhead H, Kaplan Bulut I, Thurn D, Karabay Bayazit A, Niemirska A, Canpolat N, Duzova A, Azukaitis K, Yilmaz E, Yalcinkaya F, Harambat J, Kiyak A, Alpay H, Habbig S, Zaloszyc A, Soylemezoglu O, Candan C, Rosales A, Melk A, Querfeld U, Leifheit-Nestler M, Sander A, Schaefer F, Haffner D, 4C Study Consortium; ESPN CKD-MBD Working Group (2018) Effects of nutritional vitamin D supplementation on markers of bone and mineral metabolism in children with chronic kidney disease. Nephrol Dial Transplant 33(12):2208–2217. https://doi.org/10.1093/ndt/gfy012

    Article  CAS  PubMed  Google Scholar 

  75. Aurelle M, Basmaison O, Ranchin B, Kassai-Koupai B, Sellier-Leclerc AL, Bertholet-Thomas A, Bacchetta J (2020) Intermittent cholecalciferol supplementation in children and teenagers followed in pediatric nephrology: data from a prospective single-center single-arm open trial. Eur J Pediatr 179(4):661–669. https://doi.org/10.1007/s00431-019-03553-y

    Article  CAS  PubMed  Google Scholar 

  76. Sheriff A, Mathew G, Sinha A, Hari S, Gupta N, Ramakrishnan L, Hari P, Bagga A (2022) Short-term effects of cholecalciferol supplementation on cFGF23 levels in children with chronic kidney disease and vitamin D insufficiency. Indian J Pediatr 89(10):1037–1039. https://doi.org/10.1007/s12098-022-04247-4

    Article  PubMed  Google Scholar 

  77. Ali FN, Josefson J, Mendez AJ, Mestan K, Wolf M (2016) Cord blood ferritin and fibroblast growth factor-23 levels in neonates. J Clin Endocrinol Metab 101(4):1673–1679. https://doi.org/10.1210/jc.2015-3709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fischer DC, Mischek A, Wolf S, Rahn A, Salweski B, Kundt G, Haffner D (2012) Paediatric reference values for the C-terminal fragment of fibroblast-growth factor-23, sclerostin, bone-specific alkaline phosphatase and isoform 5b of tartrate-resistant acid phosphatase. Ann Clin Biochem 49(Pt 6):546–553. https://doi.org/10.1258/acb.2012.011274

    Article  CAS  PubMed  Google Scholar 

  79. Stanczyk M, Chrul S, Wyka K, Tkaczyk M (2021) Serum intact fibroblast growth factor 23 in healthy paediatric population. Open Med (Wars) 16(1):1022–1027

    Article  CAS  PubMed  Google Scholar 

  80. Andrukhova O, Zeitz U, Goetz R, Mohammadi M, Lanske B, Erben RG (2012) FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone 51(3):621–628. https://doi.org/10.1016/j.bone.2012.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kawai M (2016) The FGF23/Klotho axis in the regulation of mineral and metabolic homeostasis. Horm Mol Biol Clin Investig 28(1):55–67. https://doi.org/10.1515/hmbci-2015-0068

    Article  CAS  PubMed  Google Scholar 

  82. Ide N, Olauson H, Sato T, Densmore MJ, Wang H, Hanai J, Larsson T, Lanske B (2016) In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling. Kidney Int 90(2):348–362. https://doi.org/10.1016/j.kint.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  83. Blau JE, Collins MT (2015) The PTH-vitamin D-FGF23 axis. Rev Endocr Metab Disord 16:165–174. https://doi.org/10.1007/s11154-015-9318-z

    Article  CAS  PubMed  Google Scholar 

  84. Latic N, Erben RG (2022) Interaction of vitamin D with peptide hormones with emphasis on parathyroid hormone, FGF23, and the renin-angiotensin-aldosterone system. Nutrients 14(23):5186. https://doi.org/10.3390/nu14235186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008. https://doi.org/10.1172/JCI32409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Han X, Cai C, Xiao Z, Quarles LD (2020) FGF23 induced left ventricular hypertrophy mediated by FGFR4 signaling in the myocardium is attenuated by soluble Klotho in mice. J Mol Cell Cardiol 138:66–74. https://doi.org/10.1016/j.yjmcc.2019.11.149

    Article  CAS  PubMed  Google Scholar 

  87. Singh S, Grabner A, Yanucil C, Schramm K, Czaya B, Krick S, Czaja MJ, Bartz R, Abraham R, Di Marco GS, Brand M, Wolf M, Faul C (2016) Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int 90(5):985–996. https://doi.org/10.1016/j.kint.2016.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vogt I, Haffner D, Leifheit-Nestler M (2019) FGF23 and phosphate-cardiovascular toxins in CKD. Toxins (Basel) 11(11):647. https://doi.org/10.3390/toxins11110647

    Article  CAS  PubMed  Google Scholar 

  89. Leifheit-Nestler M, Haffner D (2021) How FGF23 shapes multiple organs in chronic kidney disease. Mol Cell Pediatr 8(1):12. https://doi.org/10.1186/s40348-021-00123-x

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yamada S, Giachelli CM (2017) Vascular calcification in CKD-MBD: roles for phosphate, FGF23, and Klotho. Bone 100:87–93. https://doi.org/10.1016/j.bone.2016.11.012

    Article  CAS  PubMed  Google Scholar 

  91. Figurek A, Rroji M, Spasovski G (2023) FGF23 in chronic kidney disease: bridging the heart and anemia. Cells 12(4):609. https://doi.org/10.3390/cells12040609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Muras-Szwedziak K, Pawłowicz-Szlarska E, Nowicki M (2023) Effect of intravenous iron on endogenous erythropoietin and FGF-23 secretion in patients with chronic kidney disease. Ren Fail 45(1):2164305. https://doi.org/10.1080/0886022X.2022.2164305

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lindberg K, Amin R, Moe OW, Hu M, Erben RG, Östman Wernerson A, Lanske B, Olauson H, Larsoon TE (2014) The kidney is the principal organ mediating klotho effects. J Am Soc Nephrol 25(10):2169–2175. https://doi.org/10.1681/ASN.2013111209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sakan H, Nakatani K, Asai O, Imura A, Tanaka T, Yoshimoto S, Iwamoto N, Kurumatami N, Iwano M, Nabeshima I, Konishi N, Saito Y (2014) Reduced renal alpha-Klotho expression in CKD patients and its effect on renal phosphate handling and vitamin D metabolism. PLoS ONE 9(1):e86301. https://doi.org/10.1371/journal.pone.0086301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Eisenga MF, De Jong MA, Van der Meer P, Leaf DE, Huls G, Nolte IM, Gaillard CA, Bakker SJL, De Borst MH (2019) Iron deficiency, elevated erythropoietin, fibroblast growth factor 23, and mortality in the general population of the Netherlands: a cohort study. PLoS Med 16(6):e1002818. https://doi.org/10.1371/journal.pmed.1002818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hain D, Bednarski D, Cahill M, Dix A, Foote B, Haras MS, Pace R, Gutierrez OM (2023) Iron-deficiency anemia in CKD: a narrative review for the kidney care team. Kidney Med 5(8):100677. https://doi.org/10.1016/j.xkme.2023.100677

    Article  PubMed  PubMed Central  Google Scholar 

  97. Imel EA, Liu Z, Coffman M, Acton D, Mehta R, Econs MJ (2020) Oral iron replacement normalizes fibroblast growth factor 23 in iron-deficient patients with autosomal dominant hypophosphatemic rickets. J Bone Miner Res 35(2):231–238. https://doi.org/10.1002/jbmr.3878

    Article  CAS  PubMed  Google Scholar 

  98. Artunc F, Risler T (2007) Serum erythropoietin concentrations and responses to anaemia in patients with or without chronic kidney disease. Nephrol Dial Transplant 22(10):2900–2908. https://doi.org/10.1093/ndt/gfm316

    Article  CAS  PubMed  Google Scholar 

  99. Afsar B, Kanbay M, Afsar RE (2022) Interconnections of fibroblast growth factor 23 and klotho with erythropoietin and hypoxia-inducible factor. Mol Cell Biochem 477(7):1973–1985. https://doi.org/10.1007/s11010-022-04422-3

    Article  CAS  PubMed  Google Scholar 

  100. Eitner F, Richter B, Schwänen S, Szaroszyk M, Vogt I, Grund A, Thum T, Heineke J, Haffner D, Leifheit-Nestler M (2022) Comprehensive expression analysis of cardiac fibroblast growth factor 23 in health and pressure-induced cardiac hypertrophy. Front Cell Dev Biol 9:791479. https://doi.org/10.3389/fcell.2021.791479

    Article  PubMed  PubMed Central  Google Scholar 

  101. Akhabue E, Montag S, Reis JP, Pool LR, Mehta R, Yancy CW, Zhao L, Wolf M, Gutierrez OM, Carnethon MR, Isakova T (2018) FGF23 (fibroblast growth factor-23) and incident hypertension in young and middle-aged adults: the CARDIA study. Hypertension 72(1):70–76. https://doi.org/10.1161/HYPERTENSIONAHA.118.11060

    Article  CAS  PubMed  Google Scholar 

  102. Andrukhova O, Slavic S, Smorodchenko A, Zeitz U, Shalhoub V, Lanske B, Pohl EE, Erben RG (2014) FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med 6(6):744–59. https://doi.org/10.1002/emmm.201303716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kanbay M, Demiray A, Afsar B, Covic A, Tapoi L, Ureche C, Ortiz A (2021) Role of klotho in the development of essential hypertension. Hypertension 77(3):740–750. https://doi.org/10.1161/HYPERTENSIONAHA.120.16635

    Article  CAS  PubMed  Google Scholar 

  104. Yamazaki Y, Imura A, Urakawa I, Shimada T, Murakami J, Aono Y, Hasegawa H, Yamashita T, Nakatani K, Saito Y, Okamoto N, Kurumatani N, Namba N, Kitaoka T, Ozono K, Sakai T, Hataya H, Ichikawa S, Imel EA, Econs MJ, Nabeshima Y (2010) Establishment of sandwich ELISA for soluble alpha-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun 398(3):513–8. https://doi.org/10.1016/j.bbrc.2010.06.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Citterio L, Delli Carpini S, Lupoli S, Brioni E, Simonini M, Fontana S, Zagato L, Messaggio E, Barlassina C, Cusi D, Manunta P, Lanzani C (2020) Klotho gene in human salt-sensitive hypertension. Clin J Am Soc Nephrol 15(3):375–383. https://doi.org/10.2215/CJN.08620719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nanba K, Vaidya A, Williams GH, Zheng I, Else T, Rainey WE (2017) Age-related autonomous aldosteronism. Circulation 136(4):347–355. https://doi.org/10.1161/CIRCULATIONAHA.117.028201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gao P, Xu TT, Lu J, Li L, Xu J, Hao DL, Chen HZ, Liu DP (2014) Overexpression of SIRT1 in vascular smooth muscle cells attenuates angiotensin II-induced vascular remodeling and hypertension in mice. J Mol Med (Berl) 92(4):347–357. https://doi.org/10.1007/s00109-013-1111-4

    Article  CAS  PubMed  Google Scholar 

  108. Kitagawa M, Sugiyama H, Morinaga H, Inoue T, Takiue K, Ogawa A, Yamanari T, Kikumoto Y, Uchida HA, Kitamura S, Maeshima Y, Nakamura K, Ito H, Makino H (2013) A decreased level of serum soluble Klotho is an independent biomarker associated with arterial stiffness in patients with chronic kidney disease. PLoS ONE 8(2):e56695. https://doi.org/10.1371/journal.pone.0056695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Richter B, Haller J, Haffner D, Leifheit-Nestler M (2016) Klotho modulates FGF23-mediated NO synthesis and oxidative stress in human coronary artery endothelial cells. Pflugers Arch 468(9):1621–1635. https://doi.org/10.1007/s00424-016-1858-x

    Article  CAS  PubMed  Google Scholar 

  110. Courbebaisse M, Lanske B (2018) Biology of fibroblast growth factor 23: from physiology to pathology. Cold Spring Harb Perspect Med 8(5):a031260. https://doi.org/10.1101/cshperspect.a031260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zuo Q, Yang W, Liu B, Yan D, Wang Z, Wang H, Deng W, Cao X, Yang J (2022) A novel FGF23 mutation in hyperphosphatemic familial tumoral calcinosis and its deleterious effect on protein O-glycosylation. Front Endocrinol (Lausanne) 13:1008800. https://doi.org/10.3389/fendo.2022.1008800

    Article  PubMed  Google Scholar 

  112. Huang T, He Y, Li Y, Zang H, Wang Q, Gao Y (2024) The relationship between serum fibroblast growth factor 23 and klotho protein and low bone mineral density in middle-aged and elderly patients with end-stage renal disease. Horm Metab Res 56(2):142–149. https://doi.org/10.1055/a-2168-5089

    Article  CAS  PubMed  Google Scholar 

  113. Lima F, Monier-Faugere MC, Mawad H, David V, Malluche HH (2023) FGF-23 and sclerostin in serum and bone of CKD patients. Clin Nephrol 99(5):209–218. https://doi.org/10.5414/CN111111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang H, Xiang G, Li J, He S, Wang Y, Deng A, Wang Y, Guo C (2023) Promotion effect of FGF23 on osteopenia in congenital scoliosis through FGFr3/TNAP/OPN pathway. Chin Med J (Engl) 136(12):1468–1477. https://doi.org/10.1097/CM9.0000000000002690

    Article  CAS  PubMed  Google Scholar 

  115. Liu Y, Cheng Y, Sun M, Hao X, Li M (2023) Analysis of serum insulin-like growth factor-1, fibroblast growth factor 23, and Klotho levels in girls with rapidly progressive central precocious puberty. Eur J Pediatr 182(11):5007–5013. https://doi.org/10.1007/s00431-023-05174-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ewendt F, Feger M, Föller M (2021) Role of fibroblast growth factor 23 (FGF23) and αKlotho in cancer. Front Cell Dev Biol 8:601006. https://doi.org/10.3389/fcell.2020.601006

    Article  PubMed  PubMed Central  Google Scholar 

  117. Boland JM, Tebben PJ, Folpe AL (2018) Phosphaturic mesenchymal tumors: what an endocrinologist should know. J Endocrinol Invest 41(10):1173–1184. https://doi.org/10.1007/s40618-018-0849-5

    Article  CAS  PubMed  Google Scholar 

  118. Minisola S, Peacock M, Fukumoto S, Cipriani C, Pepe J, Tella SH, Collins MT (2017) Tumour-induced osteomalacia. Nat Rev Dis Primers 3:17044. https://doi.org/10.1038/nrdp.2017.44

    Article  PubMed  Google Scholar 

  119. Mansinho A, Ferreira AR, Casimiro S, Alho I, Vendrell I, Costa AL, Sousa R, Abreu C, Pulido C, Macedo D, Pacheco TR, Correia L, Costa L (2019) Levels of circulating fibroblast growth factor 23 (FGF23) and prognosis in cancer patients with bone metastases. Int J Mol Sci 20(3):695. https://doi.org/10.3390/ijms20030695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Feng S, Wang J, Zhang Y, Creighton CJ, Ittmann M (2015) FGF23 promotes prostate cancer progression. Oncotarget 6(19):17291–17301. https://doi.org/10.18632/oncotarget.4174

    Article  PubMed  PubMed Central  Google Scholar 

  121. Choudhary S, Ramasundaram P, Dziopa E, Mannion C, Kissin Y, Tricoli L, Albanese C, Lee W, Zilberberg J (2018) Human ex vivo 3D bone model recapitulates osteocyte response to metastatic prostate cancer. Sci Rep 8(1):17975. https://doi.org/10.1038/s41598-018-36424-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cymbaluk-Płoska A, Gargulińska P, Chudecka-Głaz A, Kwiatkowski S, Pius-Sadowska E, Machaliński B (2020) The suitability of FGF21 and FGF23 as new biomarkers in endometrial cancer patients. Diagnostics (Basel) 10(6):414. https://doi.org/10.3390/diagnostics10060414

    Article  CAS  PubMed  Google Scholar 

  123. Lamb YN (2018) Burosumab: first global approval. Drugs 78(6):707–714. https://doi.org/10.1007/s40265-018-0905-7

    Article  CAS  PubMed  Google Scholar 

  124. Kubota T, Namba N, Tanaka H, Muroya K, Imanishi Y, Takeuchi Y, Kanematsu M, Sun W, SeinoY OK (2023) Self-administration of burosumab in children and adults with X-linked hypophosphataemia in two open-label. Single-Arm Clinical Studies Adv Ther 40(4):1530–1545. https://doi.org/10.1007/s12325-022-02412-x

    Article  CAS  PubMed  Google Scholar 

  125. Ewert A, Rehberg M, Schlingmann KP, Hiort O, John-Kroegel U, Metzing O, Wühl E, Schaefer F, Kemper MJ, Derichs U, Richter-Unruh A, Patzer L, Albers N, Dunstheimer D, Haberland H, Heger S, Schröder C, Jorch N, Schmid E, Staude H, Weitz M, Freiberg C, Leifheit-Nestler M, Zivicnjak M, Schnabel D, Haffner D (2023) Effects of burosumab treatment on mineral metabolism in children and adolescents with X-linked hypophosphatemia. J Clin Endocrinol Metab 108(10):e998–e1006. https://doi.org/10.1210/clinem/dgad223

    Article  PubMed  Google Scholar 

  126. Levy-Shraga Y, Levi S, Regev R, Gal S, Brener A, Lebenthal Y, Gillis D, Strich D, Zung A, Cleper R, Borovitz Y, Bello R, Tenenbaum A, Zadik Z, Davidovits M, Zeitlin L, Tiosano D (2023) Linear growth of children with X-linked hypophosphatemia treated with burosumab: a real-life observational study. Eur J Pediatr 182(11):5191–5202. https://doi.org/10.1007/s00431-023-05190-y

    Article  CAS  PubMed  Google Scholar 

  127. Crotti C, Zucchi F, Alfieri C, Caporali R, Varenna M (2023) Long-term use of burosumab for the treatment of tumor-induced osteomalacia. Osteoporos Int 34(1):201–206. https://doi.org/10.1007/s00198-022-06516-6

    Article  CAS  PubMed  Google Scholar 

  128. Jan de Beur SM, Miller PD, Weber TJ, Peacock M, Insogna K, Kumar R, Rauch F, Luca D, Cimms T, Roberts MS, San Martin J, Carpenter TO (2021) Burosumab for the treatment of tumor-induced osteomalacia. J Bone Miner Res 36(4):627–635. https://doi.org/10.1002/jbmr.4233

    Article  CAS  PubMed  Google Scholar 

  129. Carpenter TO, Whyte MP, Imel EA, Boot AM, Högler W, Linglart A, Padidela R, Van’t Hoff W, Mao M, Chen CY, Skrinar A, Kakkis E, San Martin J, Portale AA (2018) Burosumab therapy in children with X-linked hypophosphatemia. N Engl J Med 378(21):1987–1998. https://doi.org/10.1056/NEJMoa1714641

    Article  CAS  PubMed  Google Scholar 

  130. Seefried L, Bravenboer N, Imel EA (2023) Editorial: rare musculoskeletal disorders: disease mechanisms and therapies. Front Endocrinol (Lausanne) 14:1215941. https://doi.org/10.3389/fendo.2023.1215941

    Article  PubMed  Google Scholar 

  131. Perwad F, Portale AA (2019) Burosumab therapy for X-linked hypophosphatemia and therapeutic implications for CKD. Clin J Am Soc Nephrol CJASN 14(7):1097. https://doi.org/10.2215/CJN.15201218

    Article  CAS  PubMed  Google Scholar 

  132. Verbueken D, Moe OW (2022) Strategies to lower fibroblast growth factor 23 bioactivity. Nephrol Dial Transplant 37(10):1800–1807. https://doi.org/10.1093/ndt/gfab012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from FONCYT (PICT-2018-1809), SECYT (UNC), Argentina. Prof. Dr. Nori Tolosa de Talamoni and Dr. Vanessa Areco are Members of Investigator Career from the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina. The authors thank Darío Talamoni for his corrections in the English language.

Funding

This study was funded by Fondo para la Investigación Científica y Tecnológica (FONCYT), PICT 2018-1809, PICT 2018-1809, PICT 2018-1809, Secretaría de Ciencia y Tecnología (SECYT).

Author information

Authors and Affiliations

Authors

Contributions

MAR: Searched literature, Discussed topics, Checked the references, Prepared Figs 1 and 2, and Graphical Abstract MEPL: Searched literature, Discussed topics, VA: Searched literature, Discussed topics, Checked the references GDdeB: Searched literature, Discussed topics, Checked the references MPD: Searched literature, Discussed topics NTdeT: Had the original idea, Searched literature, Discussed topics, Wrote the main manuscript text All authors reviewed the manuscript.

Corresponding author

Correspondence to Nori Tolosa de Talamoni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivoira, M.A., Peralta López, M.E., Areco, V. et al. Emerging concepts on the FGF23 regulation and activity. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-024-04982-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-024-04982-6

Keywords

Navigation