Skip to main content
Log in

Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin

  • Articles
  • Drug Development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The present study evaluated antioxidant and neuroprotective activities of hesperidin, a flavanone mainly isolated from citrus fruits, and its aglycone hesperetin using cell-free bioassay system and primary cultured rat cortical cells. Both hesperidin and hesperetin exhibited similar patterns of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities. While hesperidin was inactive, hesperetin was found to be a potent antioxidant, inhibiting lipid peroxidation initiated in rat brain homogenates by Fe2+ and L-ascorbic acid. In consistence with these findings, hesperetin protected primary cultured cortical cells against the oxidative neuronal damage induced by H2O2 or xanthine and xanthine oxidase. In addition, it was shown to attenuate the excitotoxic neuronal damage induced by excess glutamate in the cortical cultures. When the excitotoxicity was induced by the glutamate receptor subtype-selective ligands, only the N-methyl-D-aspartic acid-induced toxicity was selectively and markedly inhibited by hesperetin. Furthermore, hesperetin protected cultured cells against the Aβ(25–35)-induced neuronal damage. Hesperidin, however, exerted minimal or no protective effects on the neuronal damage tested in this study. Taken together, these results demonstrate potent antioxidant and neuroprotective effects of hesperetin, implying its potential role in protecting neurons against various types of insults associated with many neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behl, C. and Moosmann, B., Causes and consequences of oxidative stress in Alzheimer’s disease.Free Rad. Biol. Med., 33, 182–191 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Behl, C., Davis, J. B., Lesley, R., and Schubert, D., Hydrogen peroxide mediates amyloid-beta protein toxicity.Cell, 77, 817–827 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Bok, S. H., Lee, S. H., Park, Y. B., Bae, K. H., Son, K. H., Jeong, T. S., and Choi, M. S., Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methyl-glutaryl-CoA reductase and acyl CoA: cholesterol transferase are lower in rats fed citrus peel extract or a mixture of citrus bioflavonoids.J. Nutr., 129, 1182–1185 (1999).

    PubMed  CAS  Google Scholar 

  • Cho, J. and Lee, H.-K., Wogonin inhibits excitotoxic and oxidative neuronal damage in primary cultured rat cortical cells.Eur. J. Pharmacol., 485, 105–110 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Cho, J., Joo, N. E., Kong, J.-Y., Jeong, D.-Y., Lee, K. D., and Kang, B.-S., Inhibition of excitotoxic neuronal death by methanol extract of Acori graminei rhizoma in cultured rat cortical neurons.J. Ethnopharmacol., 73, 31–37 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Cho, J., Kim, Y. H., Kong, J.-Y., Yang, C.-H., and Park, C.-G., Protection of cultured rat cortical neurons from excitotoxicity by asarone, a major essential oil component in the rhizomes ofAcorus gramineus.Life Sci., 71, 591–599 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Cho, J., Kim, H. M., Ryu, J.-H., Jeong, Y. S., Lee, Y. S., and Jin, C., Neuroprotective and antioxidant effects of the ethyl acetate fraction prepared fromTussilago farfara L.Biol. Pharm. Bull., 28, 455–460 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Cho, J., Kong, J.-Y., Jeong, D.-Y., Lee, K. D., Lee D. U., and Kang, B.-S., NMDA receptor-mediated neuroprotection by essential oils from rhizomes ofAcorus gramineus.Life Sci., 68, 1567–1573 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Choi, J. S., Chung, H. Y., Kang, S. S., Jung, M. J., Kim, J. W., No, J. K., and Jung, H. A., The structure-activity relationship of flavonoids as scavengers of peroxynitrite.Phytother. Res., 16, 232–235 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Dew, T. P., Day, A. J., and Morgan, M. R., Xanthine oxidase activityin vitro: effects of food extracts and components.J. Agric. Food Chem., 53, 6510–6515 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Dok-Go, H., Lee, K. H., Kim, H. J., Lee, E. H., Lee, J., Song, Y. S., Lee, Y. H., Jin, C., Lee, Y. S., and Cho, J., Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated fromOpuntia ficus-indica var.saboten.Brain Res., 965, 130–136 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Dugan, L. L., Sensi, S. L., Canzoniero, L. M., Handran, S. D., Rothman, S. M., Lin, T. S., Goldberg, M. P., and Choi, D. W., Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate.J. Neurosci., 15, 6377–6388 (1995).

    PubMed  CAS  Google Scholar 

  • Galati, E. M., Monforte, M. T., Kirjavainen, S., Forestieri, A. M., Trovato, A., and Tripodo, M. M., Biological effects of hesperidin, a Citrus flavonoid (Note I): antiinflammatory and analgesic activity.Farmaco, 40, 709–712 (1994).

    PubMed  CAS  Google Scholar 

  • Galati, E. M., Trovato, A., Kirjavainen, S., Forestieri, A. M., Rossitto, A., and Monforte, M. t., Biological effects of hesperidin, a Citrus flavonoid (Note III): antihypertensive and diuretic activity in rat.Farmaco, 51, 219–221 (1996).

    PubMed  CAS  Google Scholar 

  • Garg, A., Garg, S., Zaneveld, L. J., and Singla, A. K., Chemistry and pharmacology of the Citrus bioflavonoid hesperidin.Phytother. Res., 15, 655–669 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., Reactive oxygen species and the central nervous system.J. Neurochem., 59, 1609–1623 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Harris, M. E., Hensley, K., Butterfield, D. A., Leedle, A., and Caney, J. M., Direct evidence of oxidative injury produced by the Alzheimer’s beta-amyloid peptide (1–40) in cultured hippocampal neurons.Exp. Neurol., 131, 193–202 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Hirata, A., Murakami, Y., Shoji, M., Kadoma, Y., and Fujisawa, S., Kinetics of radical-scavenging activity of hesperetin and hesperidin and their inhibitory activity on COX-2 expression.Anticancer Res., 25, 3367–3374 (2005).

    PubMed  CAS  Google Scholar 

  • Jung, H. A., Jung, M. J., Kim, J. Y., Chung, H. Y., and Choi, J. S., Inhibitory activity of flavonoids from Prunus davidiana and other flavonoids on total ROS and hydroxyl radical generation.Arch. Pharm. Res., 26, 809–815 (2003).

    PubMed  CAS  Google Scholar 

  • Jung, Y.-S., Kang, T.-S., Yoon, J.-H., Joe, B.-Y., Lim, H.-J., Seong, C.-M., Park, W. K., Kong, J. Y., Cho, J., and Park, N. S., Synthesis and evaluation of 4-hydroxyphenylacetic acid amides and 4-hydroxycinnamamides as antioxidants.Bioorg. Med. Chem. Lett., 12, 2599–2602 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kim, D.-H., Jung, E.-A., Sohng, I.-S., Han, J.-A., Kim, T.-H., and Han, M. J., Intestinal bacterial metabolism of flavonoids and its relation to some biological activities.Arch. Pharm. Res., 21, 17–23 (1998).

    PubMed  CAS  Google Scholar 

  • Kim, J. Y., Jung, K. J., Choi, J. S., and Chung, H. Y., Hesperetin: a potent antioxidant against peroxynitrite.Free Rad. Res., 38, 761–769 (2004).

    Article  CAS  Google Scholar 

  • Mandel, S. and Youdim, M. B., Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases.Free Rad. Biol. Med., 37, 304–317 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Matsuda, H., Yano, M., Kubo, M., Iinuma, M., Oyama, M., and Mizuno, M., Pharmacological study on citrus fruits. II. Anti-allergic effect of fruit of Citrus unshiu MARKOVICH (2). On flavonoid components.Yakugaku Zasshi., 111, 193–198 (1991).

    PubMed  CAS  Google Scholar 

  • Middleton, E. Jr., Kandaswami, C., and Theoharides, T. C., The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, cancer.Pharmacol. Rev., 52, 673–751 (2000).

    PubMed  CAS  Google Scholar 

  • Miyake, Y., Yamamoto, K., Tsujihara, N., and Osawa, T., Protective effects of lemon flavonoids on oxidative stress in diabetic rats.Lipids, 33, 689–695 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Nagao, A., Seki, M., and Kobayashi, H., Inhibition of xanthine oxidase by flavonoids.Biosci. Biotechnol. Biochem., 63, 1787–1790 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Orallo, F., Alvarez, E., Basaran, H., and Lugnier, C., Comparative study of the vasorelaxant activity, superoxide-scavenging ability and cyclic nucleotide phosphodiesterase-inhibitory effects of hesperetin and hesperidin.Naunyn Schmiedebergs Arch. Pharmacol., 370, 452–463 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Ratty, A. K. and Das, N. P., Effects of flavonoids on nonenzymatic lipid peroxidation: structure-activity relationship.Biochem. Med. Metab. Biol., 39, 69–79 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, I. J. and Hastings, T. G., Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation.J. Neurosci., 15, 3318–3327 (1995).

    PubMed  CAS  Google Scholar 

  • Saija, A., Scalese, M., Lanza, M., Marzullo, D., Bonina, F., and Castelli, F., Flavonoids as antioxidant agents: importance of their interaction with biomembranes.Free Rad. Biol. Med., 19, 481–486 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Sauer, D. and Fagg, G. E., Excitatory amino acids, excitotoxicity and neurodegenerative disorders. In: Krogsgaard-Larsen, P., and Hansen, J. J. (Eds.), Excitatory Amino Acid Receptors. Ellis Horwood, New York, pp. 13–33 (1992).

    Google Scholar 

  • Sengpiel, B., Preis, E., Krieglstein, J., and Prehn, J. H., NMDA-induced superoxide production and neurotoxicity in cultured rat hippocampal neurons: role of mitochondria.Eur. J. Neurosci., 10, 1903–1910 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. A., Perry, G., Richey, P. L., Sayre, L. M., Anderson, V. E., Beal, M. F., and Kowall, N., Oxidative damage in Alzheimer’s disease.Nature, 382, 120–121 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Wilmsen, P. K., Spada, D. S., and Salvador, M., Antioxidant activity of the flavonoid hesperidin in chemical and biological systems.J. Agric. Food Chem., 53, 4757–4761 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Xie, C., Lovell, M. A., Xiong, S., Kindy, M. S., Guo, J.-T., Xie, J., Amaranth, V., Montine, T. J., and Markesbery, W. R., Expression of glutathione-S-transferase isozyme in the SY5Y neuroblastoma cell line increases resistance to oxidative stress.Free Rad. Biol. Med., 31, 73–81 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Yoon, I., Lee, K. H., and Cho, J., Gossypin protects primary cultured rat cortical cells from oxidative stress- and β-amyloid-induced toxicity.Arch. Pharm. Res., 27, 454–459 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Yuting, C., Rongliang, Z., Zhongjian, J., and Yong, J., Flavonoids as superoxide scavengers and antioxidants.Free Rad. Biol. Med., 9, 19–21 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungsook Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, J. Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Arch Pharm Res 29, 699–706 (2006). https://doi.org/10.1007/BF02968255

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02968255

Key words

Navigation