Skip to main content

Advertisement

Log in

Pharmacological properties of ginsenosides in inflammation-derived cancers

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ginseng is commonly used as an herbal medicine for improvement of life quality. It is also used as a supplemental medication with anti-cancer drugs to enhance chemotherapy efficacy and shows some beneficial effects. Ginsenosides, also known as saponins, are the major active pharmacological compounds found in ginseng and have been extensively using in treatment of not only cancers but also the other inflammatory diseases such as atherosclerosis, diabetes, acute lung injury, cardiovascular, and infectious diseases. The anti-cancer activities of ginsengs and ginsenosides in different types of cancers have been well studied experimentally and clinically. The major anti-cancer mechanisms of ginseng compounds include inhibition of angiogenesis and metastasis as well as induction of cell cycle arrest and apoptosis. Herein, we review and summarize the current knowledge on the pharmacological effects of ginsengs and ginseng-derived compounds in the treatment of cancers. Moreover, the molecular and cellular mechanism(s) by which ginsengs and ginsenosides modulate the immune response in cancer diseases as well as ginsengs–drugs interaction are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Wong AST, Che C-M, Leung K-W (2015) Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat Prod Rep 32(2):256–272. https://doi.org/10.1039/C4NP00080C

    Article  CAS  PubMed  Google Scholar 

  2. Shi Z-Y, Zeng J-Z, Wong AST (2019) Chemical structures and pharmacological profiles of ginseng saponins. Molecules 24(13):2443. https://doi.org/10.3390/molecules24132443

    Article  CAS  PubMed Central  Google Scholar 

  3. Kang S, Min H (2012) Ginseng, the ‘immunity boost’: the effects of panax ginseng on immune system. J Ginseng Res 36(4):354–368. https://doi.org/10.5142/jgr.2012.36.4.354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Minh Duc N, Kasai R, Ohtani K, Ito A, Thoi Nham N, Yamasaki K, Tanaka O (1994) Saponins from Vietnamese Ginseng, Panax vietnamensis HA et GRUSHV Collected in Central Vietnam. II. Chem Pharm Bull 42(1):115–122. https://doi.org/10.1248/cpb.42.115

    Article  Google Scholar 

  5. Leung KW, Wong AS-T (2010) Pharmacology of ginsenosides: a literature review. Chin Med 5:20–20. https://doi.org/10.1186/1749-8546-5-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matsuura H, Kasai R, Tanaka O, Saruwatari Y, Kunihiro K, Fuwa T (1984) Further studies on dammarane-saponins of ginseng roots. Chem Pharm Bull 32(3):1188–1192. https://doi.org/10.1248/cpb.32.1188

    Article  CAS  Google Scholar 

  7. Nakamura S, Sugimoto S, Matsuda H, Yoshikawa M (2007) Medicinal flowers. XVII New dammarane-type triterpene glycosides from flower buds of American ginseng Panax quinquefolium L. Chem Pharm Bull 55(9):1342–1348. https://doi.org/10.1248/cpb.55.1342

    Article  CAS  Google Scholar 

  8. Lim W, Mudge KW, Vermeylen F (2005) Effects of population, age, and cultivation methods on ginsenoside content of Wild American Ginseng (Panax quinquefolium). J Agric Food Chem 53(22):8498–8505. https://doi.org/10.1021/jf051070y

    Article  CAS  PubMed  Google Scholar 

  9. Shi W, Wang Y, Li J, Zhang H, Ding L (2007) Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem 102(3):664–668. https://doi.org/10.1016/j.foodchem.2006.05.053

    Article  CAS  Google Scholar 

  10. Kasai R, Besso H, Tanaka O, Saruwatari Y, Fuwa T (1983) Saponins of red ginseng. Chem Pharm Bull 31(6):2120–2125. https://doi.org/10.1248/cpb.31.2120

    Article  CAS  Google Scholar 

  11. Hasegawa H, Sung JH, Matsumiya S, Uchiyama M (1996) Main ginseng saponin metabolites formed by intestinal bacteria. Planta Med 62:453–457

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Fan D (2018) Ginsenoside Rg5 induces apoptosis and autophagy via the inhibition of the PI3K/Akt pathway against breast cancer in a mouse model. Food Funct 9(11):5513–5527. https://doi.org/10.1039/C8FO01122B

    Article  CAS  PubMed  Google Scholar 

  13. Yu JS, Roh H-S, Baek K-H, Lee S, Kim S, So HM, Moon E, Pang C, Jang TS, Kim KH (2018) Bioactivity-guided isolation of ginsenosides from Korean Red Ginseng with cytotoxic activity against human lung adenocarcinoma cells. J Ginseng Res 42(4):562–570. https://doi.org/10.1016/j.jgr.2018.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu H, Wang J, Liu M, Zhao H, Yaqoob S, Zheng M, Cai D, Liu J (2018) Antiobesity effects of ginsenoside Rg1 on 3T3-L1 preadipocytes and high fat diet-induced obese mice mediated by AMPK. Nutrients 10(7):830. https://doi.org/10.3390/nu10070830

    Article  CAS  PubMed Central  Google Scholar 

  15. Wang H, Wu W, Wang G, Xu W, Zhang F, Wu B, Tian Y (2019) Protective effect of ginsenoside Rg3 on lung injury in diabetic rats. J Cell Biochem 120(3):3323–3330. https://doi.org/10.1002/jcb.27601

    Article  CAS  PubMed  Google Scholar 

  16. El-Sheikh AAK, Kamel MY (2016) Ginsenoside-Rb1 ameliorates lithium-induced nephrotoxicity and neurotoxicity: differential regulation of COX-2/PGE2 pathway. Biomed Pharmacother 84:1873–1884. https://doi.org/10.1016/j.biopha.2016.10.106

    Article  CAS  PubMed  Google Scholar 

  17. Kim H-J, Jung S-W, Kim S-Y, Cho I-H, Kim H-C, Rhim H, Kim M, Nah S-Y (2018) Panax ginseng as an adjuvant treatment for Alzheimer’s disease. J Ginseng Res 42(4):401–411. https://doi.org/10.1016/j.jgr.2017.12.008

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nguyen CT, Luong TT, Kim G-L, Pyo S, Rhee D-K (2015) Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor β-mediated phosphatidylinositol-3 kinase/Akt signaling. J Ginseng Res 39(1):69–75. https://doi.org/10.1016/j.jgr.2014.06.005

    Article  PubMed  Google Scholar 

  19. Kim E-H, Kim I-H, Lee M-J, Thach Nguyen C, Ha J-A, Lee S-C, Choi S, Choi K-T, Pyo S, Rhee D-K (2013) Anti-oxidative stress effect of red ginseng in the brain is mediated by peptidyl arginine deiminase type IV (PADI4) repression via estrogen receptor (ER) β up-regulation. J Ethnopharmacol 148(2):474–485. https://doi.org/10.1016/j.jep.2013.04.041

    Article  CAS  PubMed  Google Scholar 

  20. Zu G, Guo J, Che N, Zhou T, Zhang X (2016) Protective effects of ginsenoside Rg1 on intestinal ischemia/reperfusion injury-induced oxidative stress and apoptosis via activation of the Wnt/β-catenin pathway. Sci Rep 6(1):38480. https://doi.org/10.1038/srep38480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi J-G, Jin Y-H, Lee H, Oh TW, Yim N-H, Cho W-K, Ma JY (2017) Protective effect of panax notoginseng root water extract against influenza A virus infection by enhancing antiviral interferon-mediated immune responses and natural killer cell activity. Front Immunol 8:1542–1542. https://doi.org/10.3389/fimmu.2017.01542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nguyen CT, Luong TT, Lee SY, Kim GL, Kwon H, Lee H-G, Park C-K, Rhee D-K (2015) Panax ginseng aqueous extract prevents pneumococcal sepsis in vivo by potentiating cell survival and diminishing inflammation. Phytomedicine 22(11):1055–1061. https://doi.org/10.1016/j.phymed.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  23. Song Q, Merajver SD, Li JZ (2015) Cancer classification in the genomic era: five contemporary problems. Hum Genomics 9:27–27. https://doi.org/10.1186/s40246-015-0049-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. April F, Constance P, Andrew J, Kanagaratnam S, Leslie S, D Max P, Sharon W (2000) International classification of diseases for oncology, Third Edition (ICD-O-3). World Health Organization

  25. Akbani R, Ng PKS, Werner HMJ, Shahmoradgoli M, Zhang F, Ju Z, Liu W, Yang J-Y, Yoshihara K, Li J, Ling S, Seviour EG, Ram PT, Minna JD, Diao L, Tong P, Heymach JV, Hill SM, Dondelinger F, Städler N, Byers LA, Meric-Bernstam F, Weinstein JN, Broom BM, Verhaak RGW, Liang H, Mukherjee S, Lu Y, Mills GB (2014) A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat Commun 5:3887–3887. https://doi.org/10.1038/ncomms4887

    Article  CAS  PubMed  Google Scholar 

  26. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, Leiserson MDM, Niu B, McLellan MD, Uzunangelov V, Zhang J, Kandoth C, Akbani R, Shen H, Omberg L, Chu A, Margolin AA, Van’t Veer LJ, Lopez-Bigas N, Laird PW, Raphael BJ, Ding L, Robertson AG, Byers LA, Mills GB, Weinstein JN, Van Waes C, Chen Z, Collisson EA, Cancer Genome Atlas Research N, Benz CC, Perou CM, Stuart JM (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158(4):929–944. https://doi.org/10.1016/j.cell.2014.06.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mun EJ, Babiker HM, Weinberg U, Kirson ED, Von Hoff DD (2018) Tumor-treating fields: a fourth modality in cancer treatment. Clin Cancer Res 24(2):266–275. https://doi.org/10.1158/1078-0432.ccr-17-1117

    Article  CAS  PubMed  Google Scholar 

  28. Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H (2007) Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf 6(5):609–621. https://doi.org/10.1517/14740338.6.5.609

    Article  CAS  PubMed  Google Scholar 

  29. Yun TK, Choi SY (1995) Preventive effect of ginseng intake against various human cancers: a case-control study on 1987 pairs. Cancer Epidemiol Biomarkers Prev 4(4):401–408

    CAS  PubMed  Google Scholar 

  30. Pourmohamadi K, Ahmadzadeh A, Latifi M (2018) Investigating the effects of oral ginseng on the cancer-related fatigue and quality of life in patients with non-metastatic cancer. Int J Hematol Oncol Stem Cell Res 12(4):313–317

    PubMed  PubMed Central  Google Scholar 

  31. Hong H, Baatar D, Hwang SG (2021) Anticancer activities of ginsenosides, the main active components of ginseng. Evid Based Complement Alternat Med 2021:8858006–8858006. https://doi.org/10.1155/2021/8858006

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guglielmo M, Di Pede P, Alfieri S, Bergamini C, Platini F, Ripamonti CI, Orlandi E, Iacovelli NA, Licitra L, Maddalo M, Bossi P (2020) A randomized, double-blind, placebo controlled, phase II study to evaluate the efficacy of ginseng in reducing fatigue in patients treated for head and neck cancer. J Cancer Res Clin Oncol 146(10):2479–2487. https://doi.org/10.1007/s00432-020-03300-z

    Article  CAS  PubMed  Google Scholar 

  33. Greten FR, Grivennikov SI (2019) Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51(1):27–41. https://doi.org/10.1016/j.immuni.2019.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867. https://doi.org/10.1038/nature01322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schoppmann SF, Birner P, Stöckl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, Kerjaschki D (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161(3):947–956. https://doi.org/10.1016/S0002-9440(10)64255-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang C-Z, Hou L, Wan J-Y, Yao H, Yuan J, Zeng J, Park CW, Kim SH, Seo DB, Shin K-S, Zhang C-F, Chen L, Zhang Q-H, Liu Z, Sava-Segal C, Yuan C-S (2020) Ginseng berry polysaccharides on inflammation-associated colon cancer: inhibiting T-cell differentiation, promoting apoptosis, and enhancing the effects of 5-fluorouracil. J Ginseng Res 44(2):282–290. https://doi.org/10.1016/j.jgr.2018.12.010

    Article  PubMed  Google Scholar 

  37. Han SY, Kim J, Kim E, Kim SH, Seo DB, Kim J-H, Shin SS, Cho JY (2018) AKT-targeted anti-inflammatory activity of Panax ginseng calyx ethanolic extract. J Ginseng Res 42(4):496–503. https://doi.org/10.1016/j.jgr.2017.06.003

    Article  PubMed  Google Scholar 

  38. Yao H, Wan J-Y, Zeng J, Huang W-H, Sava-Segal C, Li L, Niu X, Wang Q, Wang C-Z, Yuan C-S (2018) Effects of compound K, an enteric microbiome metabolite of ginseng, in the treatment of inflammation associated colon cancer. Oncol Lett 15(6):8339–8348. https://doi.org/10.3892/ol.2018.8414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang Y, Yang WS, Yu T, Sung G-H, Park KW, Yoon K, Son Y-J, Hwang H, Kwak Y-S, Lee C-M, Rhee MH, Kim J-H, Cho JY (2014) ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract. J Ethnopharmacol 154(1):218–228. https://doi.org/10.1016/j.jep.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  40. Keum Y-S, Han SS, Chun K-S, Park K-K, Park J-H, Lee SK, Surh Y-J (2003) Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2 expression, NF-κB activation and tumor promotion. Mutat Res 523–524:75–85. https://doi.org/10.1016/S0027-5107(02)00323-8

    Article  CAS  PubMed  Google Scholar 

  41. Guo D, Guo C, Fang L, Sang T, Wang Y, Wu K, Guo C, Wang Y, Pan H, Chen R, Wang X (2021) Qizhen capsule inhibits colorectal cancer by inducing NAG-1/GDF15 expression that mediated via MAPK/ERK activation. J Ethnopharmacol 273:113964. https://doi.org/10.1016/j.jep.2021.113964

    Article  CAS  PubMed  Google Scholar 

  42. Chen X, Xu T, Lv X, Zhang J, Liu S (2021) Ginsenoside Rh2 alleviates ulcerative colitis by regulating the STAT3/miR-214 signaling pathway. J Ethnopharmacol 274:113997. https://doi.org/10.1016/j.jep.2021.113997

    Article  CAS  PubMed  Google Scholar 

  43. Jin Y, Kotakadi VS, Ying L, Hofseth AB, Cui X, Wood PA, Windust A, Matesic LE, Pena EA, Chiuzan C, Singh NP, Nagarkatti M, Nagarkatti PS, Wargovich MJ, Hofseth LJ (2008) American ginseng suppresses inflammation and DNA damage associated with mouse colitis. Carcinogenesis 29(12):2351–2359. https://doi.org/10.1093/carcin/bgn211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang X, Lin Y (2008) Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin 29(11):1275–1288. https://doi.org/10.1111/j.1745-7254.2008.00889.x

    Article  CAS  PubMed  Google Scholar 

  45. Lee DCW, Lau ASY (2011) Effects of Panax ginseng on tumor necrosis factor-α-mediated inflammation: a mini-review. Molecules 16(4):2802–2816. https://doi.org/10.3390/molecules16042802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M (2006) Angiogenesis in cancer. Vasc Health Risk Manag 2(3):213–219. https://doi.org/10.2147/vhrm.2006.2.3.213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tonini T, Rossi F, Claudio PP (2003) Molecular basis of angiogenesis and cancer. Oncogene 22(42):6549–6556. https://doi.org/10.1038/sj.onc.1206816

    Article  CAS  PubMed  Google Scholar 

  48. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395. https://doi.org/10.1038/74651

    Article  CAS  PubMed  Google Scholar 

  49. Jiménez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6(1):41–48. https://doi.org/10.1038/71517

    Article  PubMed  Google Scholar 

  50. Sato K, Mochizuki M, Saiki I, Yoo Y, Samukawa K, Azuma I (1994) Inhibition of tumor angiogenesis and metastasis by a saponin of panax ginseng, ginsenoside-Rb2. Biol Pharm Bull 17(5):635–639. https://doi.org/10.1248/bpb.17.635

    Article  CAS  PubMed  Google Scholar 

  51. Yue PYK, Wong DYL, Wu PK, Leung PY, Mak NK, Yeung HW, Liu L, Cai Z, Jiang Z-H, Fan TPD, Wong RNS (2006) The angiosuppressive effects of 20(R)- ginsenoside Rg3. Biochem Pharmacol 72(4):437–445. https://doi.org/10.1016/j.bcp.2006.04.034

    Article  CAS  PubMed  Google Scholar 

  52. Kim J-W, Jung S-Y, Kwon Y-H, Lee J-H, Lee YM, Lee B-Y, Kwon S-M (2012) Ginsenoside Rg3 attenuates tumor angiogenesis via inhibiting bioactivities of endothelial progenitor cells. Cancer Biol Ther 13(7):504–515. https://doi.org/10.4161/cbt.19599

    Article  CAS  PubMed  Google Scholar 

  53. Tang Y-C, Zhang Y, Zhou J, Zhi Q, Wu M-Y, Gong F-R, Shen M, Liu L, Tao M, Shen B, Gu D-M, Yu J, Xu M-D, Gao Y, Li W (2018) Ginsenoside Rg3 targets cancer stem cells and tumor angiogenesis to inhibit colorectal cancer progression in vivo. Int J Oncol 52(1):127–138. https://doi.org/10.3892/ijo.2017.4183

    Article  CAS  PubMed  Google Scholar 

  54. Sung W-N, Kwok H-H, Rhee M-H, Yue PY-K, Wong RN-S (2017) Korean Red Ginseng extract induces angiogenesis through activation of glucocorticoid receptor. J Ginseng Res 41(4):477–486. https://doi.org/10.1016/j.jgr.2016.08.011

    Article  PubMed  Google Scholar 

  55. Zhang J, Liu M, Huang M, Chen M, Zhang D, Luo L, Ye G, Deng L, Peng Y, Wu X, Liu G, Ye W, Zhang D (2019) Ginsenoside F1 promotes angiogenesis by activating the IGF-1/IGF1R pathway. Pharmacol Res 144:292–305. https://doi.org/10.1016/j.phrs.2019.04.021

    Article  CAS  PubMed  Google Scholar 

  56. Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20(2):69–84. https://doi.org/10.1038/s41580-018-0080-4

    Article  CAS  PubMed  Google Scholar 

  57. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196. https://doi.org/10.1038/nrm3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Seo EY, Kim WK (2011) Red ginseng extract reduced metastasis of colon cancer cells in vitro and in vivo. J Ginseng Res 35(3):315–324. https://doi.org/10.5142/jgr.2011.35.3.315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee Y-C, Wong W-T, Li L-H, Chu LJ, Menon MP, Ho C-L, Chernikov OV, Lee S-L, Hua K-F (2020) Ginsenoside M1 induces apoptosis and inhibits the migration of human oral cancer cells. Int J Mol Sci 21(24):9704. https://doi.org/10.3390/ijms21249704

    Article  CAS  PubMed Central  Google Scholar 

  60. Lee SY (2021) Anti-metastatic and anti-inflammatory effects of matrix metalloproteinase inhibition by ginsenosides. Biomedicines 9(2):198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kee J-Y, Han Y-H, Mun J-G, Park S-H, Jeon HD, Hong S-H (2019) Effect of Korean Red Ginseng extract on colorectal lung metastasis through inhibiting the epithelial-mesenchymal transition via transforming growth factor-β1/Smad-signaling-mediated Snail/E-cadherin expression. J Ginseng Res 43(1):68–76. https://doi.org/10.1016/j.jgr.2017.08.007

    Article  PubMed  Google Scholar 

  62. Kim EJ, Kwon KA, Lee YE, Kim JH, Kim S-H, Kim JH (2018) Korean Red Ginseng extract reduces hypoxia-induced epithelial-mesenchymal transition by repressing NF-κB and ERK1/2 pathways in colon cancer. J Ginseng Res 42(3):288–297. https://doi.org/10.1016/j.jgr.2017.03.008

    Article  PubMed  Google Scholar 

  63. Liu D, Liu T, Teng Y, Chen W, Zhao L, Li X (2017) Ginsenoside Rb1 inhibits hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells by regulating microRNA-25. Exp Ther Med 14(4):2895–2902. https://doi.org/10.3892/etm.2017.4889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guan S, Xu W, Han F, Gu W, Song L, Ye W, Liu Q, Guo X (2017) Ginsenoside Rg1 attenuates cigarette smoke-induced pulmonary epithelial-mesenchymal transition via inhibition of the TGF-β1/smad pathway. Biomed Res Int 2017:7171404–7171404. https://doi.org/10.1155/2017/7171404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Deng S, Wong CKC, Lai H-C, Wong AST (2017) Ginsenoside-Rb1 targets chemotherapy-resistant ovarian cancer stem cells via simultaneous inhibition of Wnt/β-catenin signaling and epithelial-to-mesenchymal transition. Oncotarget 8(16):25897–25914. https://doi.org/10.18632/oncotarget.13071

    Article  PubMed  Google Scholar 

  66. Liu T, Zhao L, Zhang Y, Chen W, Liu D, Hou H, Ding L, Li X (2014) Ginsenoside 20(S)-Rg3 targets HIF-1α to block hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells. PLoS ONE 9(9):e103887–e103887. https://doi.org/10.1371/journal.pone.0103887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang D, Wu C, Liu D, Zhang L, Long G, Hu G, Sun W (2019) Ginsenoside Rg3 inhibits migration and invasion of nasopharyngeal carcinoma cells and suppresses epithelial mesenchymal transition. Biomed Res Int 2019:8407683–8407683. https://doi.org/10.1155/2019/8407683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yun U-J, Lee IH, Lee J-S, Shim J, Kim Y-N (2020) Ginsenoside Rp1, A ginsenoside derivative, augments anti-cancer effects of actinomycin D via downregulation of an AKT-SIRT1 pathway. Cancers (Basel) 12(3):605. https://doi.org/10.3390/cancers12030605

    Article  CAS  Google Scholar 

  69. Aydiner A, Ciftci R, Sen F (2015) Renin-Angiotensin system blockers may prolong survival of metastatic non-small cell lung cancer patients receiving erlotinib. Medicine (Baltimore) 94(22):e887–e887. https://doi.org/10.1097/MD.0000000000000887

    Article  CAS  Google Scholar 

  70. Guan X (2015) Cancer metastases: challenges and opportunities. Acta Pharm Sin B 5(5):402–418. https://doi.org/10.1016/j.apsb.2015.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bogenrieder T, Herlyn M (2003) Axis of evil: molecular mechanisms of cancer metastasis. Oncogene 22(42):6524–6536. https://doi.org/10.1038/sj.onc.1206757

    Article  CAS  PubMed  Google Scholar 

  72. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9–22. https://doi.org/10.1038/nrc2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Parise LV, Lee JW, Juliano RL (2000) New aspects of integrin signaling in cancer. Semin Cancer Biol 10(6):407–414. https://doi.org/10.1006/scbi.2000.0337

    Article  CAS  PubMed  Google Scholar 

  74. Choo M-K, Sakurai H, Kim D, Saiki I (2008) A ginseng saponin metabolite suppresses tumor necrosis factor-α-promoted metastasis by suppressing nuclear factor-κB signaling in murine colon cancer cells. Oncol Rep 19:595–600

    CAS  PubMed  Google Scholar 

  75. Wang P, Du X, Xiong M, Cui J, Yang Q, Wang W, Chen Y, Zhang T (2016) Ginsenoside Rd attenuates breast cancer metastasis implicating derepressing microRNA-18a-regulated Smad2 expression. Sci Rep 6(1):33709. https://doi.org/10.1038/srep33709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Phi LTH, Wijaya YT, Sari IN, Yang Y-G, Lee YK, Kwon HY (2018) The anti-metastatic effect of ginsenoside Rb2 in colorectal cancer in an EGFR/SOX2-dependent manner. Cancer Med 7(11):5621–5631. https://doi.org/10.1002/cam4.1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu W, Zhou Q, Zhao W, Gong Y, Su A, Liu F, Liu Y, Li Z, Zhu J (2018) Ginsenoside Rg3 inhibition of thyroid cancer metastasis is associated with alternation of actin skeleton. J Med Food 21(9):849–857. https://doi.org/10.1089/jmf.2017.4144

    Article  CAS  PubMed  Google Scholar 

  78. Collins K, Jacks T, Pavletich NP (1997) The cell cycle and cancer. Proc Natl Acad Sci U S A 94(7):2776–2778. https://doi.org/10.1073/pnas.94.7.2776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15(6):122. https://doi.org/10.1186/gb4184

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kang KA, Kim YW, Kim SU, Chae S, Koh YS, Kim HS, Choo MK, Kim DH, Hyun JW (2005) G1 phase arrest of the cell cycle by a ginseng metabolite, compound K, in U937 human monocytic leukamia cells. Arch Pharm Res 28(6):685–690. https://doi.org/10.1007/BF02969359

    Article  CAS  PubMed  Google Scholar 

  81. Xiong W, Li J, Jiang R, Li D, Liu Z, Chen D (2017) Research on the effect of ginseng polysaccharide on apoptosis and cell cycle of human leukemia cell line K562 and its molecular mechanisms. Exp Ther Med 13:924–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wong VKW, Cheung SSF, Li T, Jiang Z-H, Wang J-R, Dong H, Yi XQ, Zhou H, Liu L (2010) Asian ginseng extract inhibits in vitro and in vivo growth of mouse lewis lung carcinoma via modulation of ERK-p53 and NF-κB signaling. J Cell Biochem 111(4):899–910. https://doi.org/10.1002/jcb.22778

    Article  CAS  PubMed  Google Scholar 

  83. Lee J-H, Leem DG, Chung K-S, Kim K-T, Choi SY, Lee K-T (2018) Panaxydol Derived from Panax ginseng Inhibits G1 Cell Cycle Progression in Non-small Cell Lung Cancer via Upregulation of Intracellular Ca2+ Levels. Biol Pharm Bull 41(11):1701–1707. https://doi.org/10.1248/bpb.b18-00447

    Article  CAS  PubMed  Google Scholar 

  84. Li T, Sun W, Dong X, Yu W, Cai J, Yuan Q, Shan L, Efferth T (2018) Total ginsenosides of Chinese ginseng induces cell cycle arrest and apoptosis in colorectal carcinoma HT-29 cells. Oncol Lett 16(4):4640–4648. https://doi.org/10.3892/ol.2018.9192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang X-D, Yang Y-Y, Ouyang D-S, Yang G-P (2015) A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 100:208–220. https://doi.org/10.1016/j.fitote.2014.11.019

    Article  CAS  PubMed  Google Scholar 

  86. Jung J, Jang HJ, Eom SJ, Choi NS, Lee N-K, Paik H-D (2019) Fermentation of red ginseng extract by the probiotic Lactobacillus plantarum KCCM 11613P: ginsenoside conversion and antioxidant effects. J Ginseng Res 43(1):20–26. https://doi.org/10.1016/j.jgr.2017.07.004

    Article  PubMed  Google Scholar 

  87. Kim KH, Lee D, Lee HL, Kim C-E, Jung K, Kang KS (2018) Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res 42(3):239–247. https://doi.org/10.1016/j.jgr.2017.03.011

    Article  PubMed  Google Scholar 

  88. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH (2000) Steaming of ginseng at high temperature enhances biological activity. J Nat Prod 63(12):1702–1704. https://doi.org/10.1021/np990152b

    Article  CAS  PubMed  Google Scholar 

  89. Ramya M, Deok Chun Y (2017) Ginseng nanoparticles: a budding tool for cancer treatment. Nanomedicine 12(10):1091–1094. https://doi.org/10.2217/nnm-2017-0070

    Article  CAS  Google Scholar 

  90. Ganesan P, Ko H-M, Kim I-S, Choi D-K (2015) Recent trends of nano bioactive compounds from ginseng for its possible preventive role in chronic disease models. RSC Adv 5(119):98634–98642. https://doi.org/10.1039/C5RA20559J

    Article  CAS  Google Scholar 

  91. Dai L, Zhu W, Si C, Lei J (2018) “Nano-Ginseng” for enhanced cytotoxicity AGAINST cancer cells. Int J Mol Sci 19(2):627. https://doi.org/10.3390/ijms19020627

    Article  CAS  PubMed Central  Google Scholar 

  92. Voruganti S, Qin J-J, Sarkar S, Nag S, Walbi IA, Wang S, Zhao Y, Wang W, Zhang R (2015) Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: Nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action. Oncotarget 6(25):21379–21394. https://doi.org/10.18632/oncotarget.4091

    Article  PubMed  PubMed Central  Google Scholar 

  93. Geng L, Fan J-n, Gao Q, Yu JP, Hua BJ (2016) Preliminary study for the roles and mechanisms of 20(R)-ginsenoside Rg3 and PEG-PLGA-Rg3 nanoparticles in the Lewis lung cancer mice. Journal of Peking University Health sciences 48:496–501

    CAS  PubMed  Google Scholar 

  94. Mathiyalagan R, Subramaniyam S, Kim YJ, Kim Y-C, Yang DC (2014) Ginsenoside compound K-bearing glycol chitosan conjugates: Synthesis, physicochemical characterization, and in vitro biological studies. Carbohydr Polym 112:359–366. https://doi.org/10.1016/j.carbpol.2014.05.098

    Article  CAS  PubMed  Google Scholar 

  95. Mahady GB, Gyllenhaal C, Fong HHS, Farnsworth NR (2000) Ginsengs: a review of safety and efficacy. Nutr Clin Care 3(2):90–101. https://doi.org/10.1046/j.1523-5408.2000.00020.x

    Article  Google Scholar 

  96. Jin X, Che D-b, Zhang Z-h, Yan H-m, Jia Z-y, Jia X-b (2016) Ginseng consumption and risk of cancer: a meta-analysis. J Ginseng Res 40(3):269–277. https://doi.org/10.1016/j.jgr.2015.08.007

    Article  PubMed  Google Scholar 

  97. Zhu C, Wang J, Liu W, Chen L, Abdelrahim MEA, Ren L (2020) Ginseng consumption possible effect on liver cancer a meta-analysis. Nutr Cancer. https://doi.org/10.1080/01635581.2020.1803929

    Article  PubMed  Google Scholar 

  98. Gao YL, Liu ZF, Li CM, Shen JY, Yin HX, Li GS (2011) Subchronic toxicity studies with ginsenoside compound K delivered to dogs via intravenous administration. Food Chem Toxicol 49(8):1857–1862. https://doi.org/10.1016/j.fct.2011.05.003

    Article  CAS  PubMed  Google Scholar 

  99. Lee J-Y, Lim K-M, Kim S-Y, Bae O-N, Noh J-Y, Chung S-M, Kim K, Shin Y-S, Lee M-Y, Chung J-H (2010) Vascular smooth muscle dysfunction and remodeling induced by ginsenoside Rg3, a bioactive component of ginseng. Toxicol Sci 117(2):505–514. https://doi.org/10.1093/toxsci/kfq201

    Article  CAS  PubMed  Google Scholar 

  100. Lee N-H, Son C-G (2011) Systematic review of randomized controlled trials evaluating the efficacy and safety of Ginseng. J Acupunct Meridian Stud 4(2):85–97. https://doi.org/10.1016/S2005-2901(11)60013-7

    Article  PubMed  Google Scholar 

  101. Coon JT, Ernst E (2002) Panax ginseng: a systematic review of adverse effects and drug interactions. Drug Saf 25(5):323–344. https://doi.org/10.2165/00002018-200225050-00003

    Article  CAS  PubMed  Google Scholar 

  102. Paik DJ, Lee CH (2015) Review of cases of patient risk associated with ginseng abuse and misuse. J Ginseng Res 39(2):89–93. https://doi.org/10.1016/j.jgr.2014.11.005

    Article  PubMed  Google Scholar 

  103. Siegel RK (1979) Ginseng abuse syndrome: problems with the panacea. JAMA 241(15):1614–1615. https://doi.org/10.1001/jama.1979.03290410046024

    Article  CAS  PubMed  Google Scholar 

  104. Wang Y, Xu H, Fu W, Lu Z, Guo M, Wu X, Sun M, Liu Y, Yu X, Sui D (2019) 20(S)-Protopanaxadiol inhibits angiotensin II-induced epithelial- mesenchymal transition by downregulating SIRT1. Front Pharmacol. https://doi.org/10.3389/fphar.2019.00475

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zhang L, Shan X, Chen Q, Xu D, Fan X, Yu M, Yan Q, Liu J (2019) Downregulation of HDAC3 by ginsenoside Rg3 inhibits epithelial–mesenchymal transition of cutaneous squamous cell carcinoma through c-Jun acetylation. J Cell Physiol 234(12):22207–22219. https://doi.org/10.1002/jcp.28788

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Chelsea Anita Kelland (Department of Internal Medicine, University of California at Davis, USA) and Minh Tan Nguyen (School of Dentistry, University of California at Los Angeles, USA) for their critical reading and useful discussions.

Funding

This work was supported by Nguyen Tat Thanh University (CTN-2020), Duy Tan University (DLH-2020), and Ho Chi Minh City Open University (NHN-2020).

Author information

Authors and Affiliations

Authors

Contributions

Cuong T Nguyen and Do L Huynh searched the literatures and wrote the manuscript. Nguyen H Nguyen participated in discussion and revised the manuscript.

Corresponding author

Correspondence to Cuong Thach Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human and animal subjects performed by any of the authors.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luong Huynh, D., Nguyen, N.H. & Nguyen, C.T. Pharmacological properties of ginsenosides in inflammation-derived cancers. Mol Cell Biochem 476, 3329–3340 (2021). https://doi.org/10.1007/s11010-021-04162-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04162-w

Keywords

Navigation