Skip to main content

Advertisement

Log in

Autophagy: a promising therapeutic target for improving mesenchymal stem cell biological functions

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are considered to be a promising therapeutic material due to their capacities for self-renewal, multilineage differentiation, and immunomodulation and have attracted great attention in regenerative medicine. However, MSCs may lose their biological functions because of donor age or disease and environmental pressure before and after transplantation, which hinders the application of MSC-based therapy. As a major intracellular lysosome-dependent degradative process, autophagy plays a pivotal role in maintaining cellular homeostasis and withstanding environmental pressure and may become a potential therapeutic target for improving MSC functions. Recent studies have demonstrated that the regulation of autophagy is a promising approach for improving the biological properties of MSCs. More in-depth investigations about the role of autophagy in MSC biology are required to contribute to the clinical application of MSCs. In this review, we focus on the role of autophagy regulation by various physical and chemical factors on the biological functions of MSCs in vitro and in vivo, and provide some strategies for enhancing the therapeutic efficacy of MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AD-MSCs:

Adipose tissue-derived mesenchymal stem cells

ADM:

Adrenomedullin

AMBRA1:

Activating molecule in Beclin-1 regulated autophagy

AMPK:

Adenosine monophosphate-activated protein kinase

ATG:

Autophagy-related genes

ATV:

Atorvastatin

BECN1:

Bcl-2 interacting protein 1, also known as Beclin-1

bFGF:

Basic fibroblast growth factor

BMSCs:

Bone marrow mesenchymal stem cells

CCL:

Chemokine (C-C motif) ligand

CH:

Cholesterol

CP-MSCs:

Placental chorionic plate-derived mesenchymal stem cells

CXCL:

Chemokine (C-X-C motif) ligand

CX3CL:

CX3C chemokine ligand

Dex:

Dexamethasone

FIP200:

FAK family-interacting protein of 200 kDa

ENA-78:

Epithelial neutrophil-activating protein 78

ER:

Endoplasmic reticulum

GATA-4:

GATA-binding protein 4

GDNF:

Glial cell line-derived neurotrophic factor

GRO:

Growth-regulated oncogene

HG:

High glucose

HGF:

Hepatocyte growth factor

HIF-1α:

Hypoxia-inducible factor-1α

HLA:

Human leukocyte antigen

HO-1:

Heme oxygenase-1

H/SD:

Hypoxia/serum deprivation

IDO:

Indoleamine 2,3-dioxigenase

IGF-1:

Insulin-like growth factor-1

IGF1R:

Insulin-like growth factor receptors

IL:

Interleukins

IL-1RA:

Interleukin-1 receptor antagonist

IP3 :

Inositol 1,4,5-trisphosphate

i-TAC:

Interferon-inducible T cell alpha chemoattractant

LIF:

Leukemia inhibitory factor

LIPUS:

Low-intensity pulsed ultrasound

MAPK:

Mitogen-activated protein kinase

MAP-LC3/LC3:

Microtubule-associated protein 1 light chain 3

MCP:

Monocyte chemotactic protein

MHC:

Major histocompatibility complex

MIP:

Macrophage inflammatory protein

MMP:

Metalloproteinase

m-TORC1:

Mammalian target of rapamycin complex 1

m-TORC2:

Mammalian target of rapamycin complex 2

mTOR:

Mammalian target of rapamycin

NGF:

Nerve growth factor

NK cells:

Natural killer cells

NO:

Nitric oxide

Nrf2:

Nuclear factor erythoid-2-related factor 2

OGD:

Oxygen-glucose deprivation

PA:

Palmitate

PDK1:

3-phosphoinositide-dependent protein kinase-1

PDLSCs:

Periodontal ligament mesenchymal stem cells

PE:

Phosphatidylethanolamine

PGE2:

Prostaglandin E2

PIGF:

Placental growth factor

PI3P:

Phosphatidylinositol-3-phosphate

PI3KC3–C1:

Class III phosphatidylinositol 3-kinase complex I

PI3Ks:

Phosphatidylinositol 3-kinases

PIP3 :

Phosphatidylinositol-3,4,5-trisphosphate

PTEN:

Phosphatase and tensin homolog deleted on chromosome ten

PTGS2:

Prostaglandin-endoperoxide synthase 2

RANTES:

Regulated upon activation normal T cell expressed and secreted

RAP:

Rapamycin

RB1CC1:

RB1-inducible coiled-coil protein 1

ROS:

Reactive oxygen species

RSLT:

Reduced-size liver transplantation

SCF:

Stem cell growth factor

SDF-1:

Stromal-derived factor-1

SLE:

Systemic lupus erythematosus

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor

SOD3:

Superoxide dismutase 3

SOD:

Superoxide dismutase

SSN:

Solid silica nanoparticles

STC-1:

Stanniocalcin-1

TCM:

Traditional Chinese medicine

TIMP:

Tissue inhibitor of metalloproteinase

TGF-β1:

Transforming growth factor-beta-1

UCMSCs:

Umbilical cord-derived mesenchymal stem cells

ULK1:

Unc51-like autophagy-activating kinase-1

VAMP8:

Vesicle-associated membrane protein 8

VCAM-1:

Vascular cell adhesion molecule-1

VEGF:

Vascular endothelial growth factor

VLA-4:

Very late antigen-4

VPS34:

Vacuolar protein sorting protein 34

VPS15:

Vacuolar protein sorting protein 15

References

  1. Chen Y, Zeng Z, Sun J, Zeng H, Huang Y, Zhang Z (2015) Mesenchymal stem cell–conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells. J Radiat Res 56:700–708. https://doi.org/10.1093/jrr/rrv026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM (2017) Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cell Transl Med 6:2173–2185. https://doi.org/10.1002/sctm.17-0129

    Article  Google Scholar 

  3. Fafianlabora J, Fernandezpernas P, Fuentes I, De Toro J, Oreiro N, Sangiaoalvarellos S, Mateos J, Arufe MC (2015) Influence of age on rat bone-marrow mesenchymal stem cells potential. Sci Rep 5:16765–16765. https://doi.org/10.1038/srep16765

    Article  CAS  Google Scholar 

  4. Valentina T, Emanuela V, Claudia G (2016) Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int J Mol Sci 17:1164. https://doi.org/10.3390/ijms17071164

    Article  CAS  Google Scholar 

  5. Hu C, Li L (2018) Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J Cell Mol Med 22:1428–1442. https://doi.org/10.1111/jcmm.13492

    Article  PubMed  PubMed Central  Google Scholar 

  6. Janina F, Jagadeesh Kumar V, Ana RR, Gertrud S, Henning M, Magali C (2014) Determination of the chondrogenic differentiation processes in human bone marrow-derived mesenchymal stem cells genetically modified to overexpress transforming growth factor-β via recombinant adeno-associated viral vectors. Hum Gene Ther 25:1050–1060. https://doi.org/10.1089/hum.2014.091

    Article  CAS  Google Scholar 

  7. Haque N, Kasim NHA, Rahman MT (2015) Optimization of pre-transplantation conditions to enhance the efficacy of mesenchymal stem cells. Int J Biol Sci 11:324–334. https://doi.org/10.7150/ijbs.10567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jones KM, Saric N, Russell JP, Andoniadou CL, Scambler PJ, Basson MA (2015) CHD7 maintains neural stem cell quiescence and prevents premature stem cell depletion in the adult hippocampus. Stem Cells 33:196–210. https://doi.org/10.1002/stem.1822

    Article  CAS  PubMed  Google Scholar 

  9. Ferro F, Spelat R, Shaw G, Duffy N, Islam MN, O’Shea PM, O’Toole D, Howard L, Murphy JM (2019) Survival/adaptation of bone marrow-derived mesenchymal stem cells after long-term starvation through selective processes. Stem Cells 37:813–827. https://doi.org/10.1002/stem.2998

    Article  CAS  PubMed  Google Scholar 

  10. Sbrana FV, Cortini M, Avnet S, Perut F, Columbaro M, De Milito A, Baldini N (2016) The role of autophagy in the maintenance of stemness and differentiation of mesenchymal stem cells. Stem Cell Rev Rep 12:621–633. https://doi.org/10.1007/s12015-016-9690-4

    Article  CAS  PubMed  Google Scholar 

  11. Ma Y, Qi M, An Y, Zhang L, Yang R, Doro DH, Liu W, Jin Y (2018) Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell 17:669. https://doi.org/10.1111/acel.12709

    Article  CAS  Google Scholar 

  12. Zheng Y, Hu CJ, Zhuo RH, Lei YS, Han NN, He L (2014) Inhibition of autophagy alleviates the senescent state of rat mesenchymal stem cells during long-term culture. Mol Med Rep 10:3003–3008. https://doi.org/10.3892/mmr.2014.2624

    Article  CAS  PubMed  Google Scholar 

  13. Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327:449–462. https://doi.org/10.1007/s00441-006-0308-z

    Article  CAS  PubMed  Google Scholar 

  14. Zhan XS, El-Ashram S, Luo DZ, Luo HN, Wang BY, Chen SF, Bai YS, Chen ZS, Liu CY, Ji HQ (2019) A comparative study of biological characteristics and transcriptome profiles of mesenchymal stem cells from different canine tissues. Int J Mol Sci 20:1485. https://doi.org/10.3390/ijms20061485

    Article  CAS  PubMed Central  Google Scholar 

  15. Liu Z, Lu S-J, Lu Y, Tan X, Zhang X, Yang M (2015) Transdifferentiation of human hair follicle mesenchymal stem cells into red blood cells by OCT4. Stem Cells Int 2015:389628. https://doi.org/10.1155/2015/389628

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sánchez L, Gutierrez-Aranda I, Ligero G, Rubio R, Muñoz-López M, García-Pérez JL, Ramos V, Real PJ, Bueno C, Rodríguez R (2015) Enrichment of human ESC-derived multipotent mesenchymal stem cells with immunosuppressive and anti-inflammatory properties capable to protect against experimental inflammatory bowel disease. Stem Cells 29:251–262. https://doi.org/10.1002/stem.569

    Article  CAS  Google Scholar 

  17. Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S, Selig M, Godwin J, Law K, Placidi C (2016) Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol 183:993–1004. https://doi.org/10.4049/jimmunol.0900803

    Article  CAS  Google Scholar 

  18. Centeno C, Markle J, Dodson E, Stemper I, Williams CJ, Hyzy M, Ichim T, Freeman M (2017) Treatment of lumbar degenerative disc disease-associated radicular pain with culture-expanded autologous mesenchymal stem cells: a pilot study on safety and efficacy. J Transl Med 15:197. https://doi.org/10.1186/s12967-017-1300-y

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nasr MB, Vergani A, Avruch J, Liu L, Kefaloyianni E, D’Addio F, Tezza S, Corradi D, Bassi R, Valderramavasquez A (2015) Co-transplantation of autologous MSCs delays islet allograft rejection and generates a local immunoprivileged site. Acta Diabetol 52:917–927. https://doi.org/10.1007/s00592-015-0735-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Okolicsanyi RK, Camilleri ET, Oikari LE, Yu C, Cool SM, van Wijnen AJ, Griffiths LR, Haupt LM (2015) Human mesenchymal stem cells retain multilineage differentiation capacity including neural marker expression after extended in vitro expansion. PLoS One 10:e0137255. https://doi.org/10.1371/journal.pone.0137255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gawronskakozak B, Manuel JA, Prpic V (2007) Ear mesenchymal stem cells (EMSC) can differentiate into spontaneously contracting muscle cells. J Cell Biochem 102:122–135. https://doi.org/10.1002/jcb.21286

    Article  CAS  Google Scholar 

  22. Liu QX, Cheng GG, Wang ZW, Zhan SJ, Xiong BB, Zhao XM (2015) Bone marrow-derived mesenchymal stem cells differentiate into nerve-like cells in vitro after transfection with brain-derived neurotrophic factor gene. In Vitro Cell Dev Biol Anim 51:319–327. https://doi.org/10.1007/s11626-015-9875-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu M, Zhou T, Liu H (2015) Ca2+ and EGF induce the differentiation of human embryo mesenchymal stem cells into epithelial-like cells. Cell Biol Int 39:852–857. https://doi.org/10.1002/cbin.10398

    Article  CAS  PubMed  Google Scholar 

  24. Hu C, Li L (2015) In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration. Protein Cell 6:562–574. https://doi.org/10.1007/s13238-015-0180-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu S, Yuan M, Hou K, Zhang L, Zheng X, Zhao B, Sui X, Xu W, Lu S, Guo Q (2012) Immune characterization of mesenchymal stem cells in human umbilical cord Wharton’s jelly and derived cartilage cells. Cell Immunol 278:35–44. https://doi.org/10.1016/j.cellimm.2012.06.010

    Article  CAS  PubMed  Google Scholar 

  26. Bruno S, Deregibus MC, Camussi G (2015) The secretome of mesenchymal stromal cells: role of extracellular vesicles in immunomodulation. Immunol Lett 168:154–158. https://doi.org/10.1016/j.imlet.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  27. Li N, Hua J (2017) Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci 74:2345–2360. https://doi.org/10.1007/s00018-017-2473-5

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Chen X, Cao W, Shi Y (2014) Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 15:1009. https://doi.org/10.1038/ni.3002

    Article  CAS  PubMed  Google Scholar 

  29. Gnecchi M, Danieli P, Malpasso G, Ciuffreda MC (2016) Paracrine mechanisms of mesenchymal stem cells in tissue repair. Methods Mol Biol 1416:123–146. https://doi.org/10.1007/978-1-4939-3584-0_7

    Article  CAS  PubMed  Google Scholar 

  30. Bassi EJ, de Almeida DC, Moraes-Vieira PM, Camara NO (2012) Exploring the role of soluble factors associated with immune regulatory properties of mesenchymal stem cells. Stem Cell Rev Rep 8:329–342. https://doi.org/10.1007/s12015-011-9311-1

    Article  CAS  PubMed  Google Scholar 

  31. Montemurro T, Vigano M, Ragni E, Barilani M, Parazzi V, Boldrin V, Lavazza C, Montelatici E, Banfi F, Lauri E, Giovanelli S, Baccarin M, Guerneri S, Giordano R, Lazzari L (2016) Angiogenic and anti-inflammatory properties of mesenchymal stem cells from cord blood: soluble factors and extracellular vesicles for cell regeneration. Eur J Cell Biol 95:228–238. https://doi.org/10.1016/j.ejcb.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  32. Li Z, Wang J, Gao F, Zhang J, Tian H, Shi X, Lian C, Sun Y, Li W, Xu JY, Li P, Zhang J, Gao Z, Xu J, Wang F, Lu L, Xu GT (2016) Human adipose-derived stem cells delay retinal degeneration in Royal College of Surgeons rats through anti-apoptotic and VEGF-mediated neuroprotective effects. Curr Mol Med 16:553–566. https://doi.org/10.2174/1566524016666160607090538

    Article  CAS  PubMed  Google Scholar 

  33. Ohkouchi S, Block GJ, Katsha AM, Kanehira M, Ebina M, Kikuchi T, Saijo Y, Nukiwa T, Prockop DJ (2012) Mesenchymal stromal cells protect cancer cells from ROS-induced apoptosis and enhance the Warburg effect by secreting STC1. Mol Ther 20:417–423. https://doi.org/10.1038/mt.2011.259

    Article  CAS  PubMed  Google Scholar 

  34. Ishii M, Takahashi M, Murakami J, Yanagisawa T, Nishimura M (2019) Vascular endothelial growth factor-C promotes human mesenchymal stem cell migration via an ERK-and FAK-dependent mechanism. Mol Cell Biochem 455:185–193. https://doi.org/10.1007/s11010-018-3481-y

    Article  CAS  PubMed  Google Scholar 

  35. Li L, Zhang S, Zhang Y, Yu B, Xu Y, Guan Z (2009) Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure. Mol Biol Rep 36:725–731. https://doi.org/10.1007/s11033-008-9235-2

    Article  CAS  PubMed  Google Scholar 

  36. Jeong GJ, Song SY, Kang M, Go S, Sohn HS, Kim BS (2018) An injectable decellularized matrix that improves mesenchymal stem cell engraftment for therapeutic angiogenesis. ACS Biomater Sci Eng 4:2571–2581. https://doi.org/10.1021/acsbiomaterials.8b00617

    Article  CAS  PubMed  Google Scholar 

  37. Gonzalezking H, Garcia NA, Ontoriaoviedo I, Ciria M, Montero JA, Sepulveda P (2017) Hypoxia inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes. Stem Cells 35:1747–1759. https://doi.org/10.1002/stem.2618

    Article  CAS  Google Scholar 

  38. Kwon HM, Hur S-M, Park K-Y, Kim C-K, Kim Y-M (2014) Multiple paracrine factors secreted by mesenchymal stem cells contribute to angiogenesis. Vasc Pharmacol 63:19–28. https://doi.org/10.1016/j.vph.2014.06.004

    Article  CAS  Google Scholar 

  39. Ali A, Akhter MA, Haneef K, Khan I, Naeem N, Habib R, Kabir N, Salim A (2015) Dinitrophenol modulates gene expression levels of angiogenic, cell survival and cardiomyogenic factors in bone marrow derived mesenchymal stem cells. Gene 555:448–457. https://doi.org/10.1016/j.gene.2014.10.045

    Article  CAS  PubMed  Google Scholar 

  40. Bandara N, Kong A, Sivakumaran P, Mitchel G, Wang LX, Lim S, Strappe P (2017) Nitric oxide directed reprogramming of rat bone marrow derived mesenchymal stem cells into endothelial-like cells via activation of WNT/β-catenin signaling. Mech Develop 145:S134–S135. https://doi.org/10.1016/j.mod.2017.04.374

    Article  Google Scholar 

  41. Hynes B, Kumar AHS, Osullivan JF, Buneker CK, Leblond A, Weiss S, Schmeckpeper J, Martin K, Caplice NM (2013) Potent endothelial progenitor cell-conditioned media-related anti-apoptotic, cardiotrophic, and pro-angiogenic effects post-myocardial infarction are mediated by insulin-like growth factor-1. Eur Heart J 34:782–789. https://doi.org/10.1093/eurheartj/ehr435

    Article  CAS  PubMed  Google Scholar 

  42. Rabbani S, Soleimani M, Sahebjam M, Imani M, Haeri A, Ghiaseddin A, Nassiri SM, Majd Ardakani J, Tajik Rostami M, Jalali A, Ahmadi Tafti SH (2018) Simultaneous delivery of Wharton’s Jelly mesenchymal stem cells and insulin-like growth Factor-1 in acute myocardial infarction. Iran J. Pharm Res 17:426–441. https://doi.org/10.22037/IJPR.2018.2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. He JG, Li HR, Li BB, Xie QL, Yan D, Wang XJ (2019) Bone marrow mesenchymal stem cells overexpressing GATA-4 improve cardiac function following myocardial infarction. Perfusion 34:696–704. https://doi.org/10.1177/0267659119847442

    Article  PubMed  Google Scholar 

  44. Meirelles LD, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–2299. https://doi.org/10.1634/stemcells.2007-1122

    Article  Google Scholar 

  45. Steingen C, Brenig F, Baumgartner L, Schmidt J, Schmidt A, Bloch W (2008) Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells. Proc Natl Acad Sci U S A 44:1072–1084. https://doi.org/10.1016/j.yjmcc.2008.03.010

    Article  CAS  Google Scholar 

  46. Pourjafar M, Saidijam M, Etemadi K, Najafi R (2017) All-trans retinoic acid enhances in vitro mesenchymal stem cells migration by targeting matrix metalloproteinases 2 and 9. Biotechnol Lett 39:1263–1268. https://doi.org/10.1007/s10529-017-2350-1

    Article  CAS  PubMed  Google Scholar 

  47. Vogel S, Peters C, Etminan N, Borger V, Schimanski A, Sabel M, Sorg RV (2013) Migration of mesenchymal stem cells towards glioblastoma cells depends on hepatocyte-growth factor and is enhanced by aminolaevulinic acid-mediated photodynamic treatment. Biochem Biophys Res Commun 431:428–432. https://doi.org/10.1016/j.bbrc.2012.12.153

    Article  CAS  PubMed  Google Scholar 

  48. Choi CH, Chung JY, Chung EJ, Sears JD, Lee JW, Bae DS, Hewitt SM (2016) Prognostic significance of annexin A2 and annexin A4 expression in patients with cervical cancer. BMC Cancer 16:448. https://doi.org/10.1186/s12885-016-2459-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oh M, Kim J, Kang C (2016) Protective effect of S-adenosyl-L-methionine on oxidative stress-induced apoptosis regulates Nrf2 via IGF-I in rat bone marrow mesenchymal stem cells. J Stem Cell Res Ther 6:1–9. https://doi.org/10.4172/2157-7633.1000323

    Article  CAS  Google Scholar 

  50. Jang YH, You DH, Nam MJ (2015) Protective effects of HGF gene-expressing human mesenchymal stem cells in acetaminophen-treated hepatocytes. Growth Factors 33:319–325. https://doi.org/10.3109/08977194.2015.1080695

    Article  CAS  PubMed  Google Scholar 

  51. Xu G, Zhang Y, Zhang L, Ren G, Shi Y (2007) The role of IL-6 in inhibition of lymphocyte apoptosis by mesenchymal stem cells. Biochem Biophys Res Commun 361:745–750. https://doi.org/10.1016/j.bbrc.2007.07.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Francois S, Mouiseddine M, Allenet-Lepage B, Voswinkel J, Douay L, Benderitter M, Chapel A (2013) Human mesenchymal stem cells provide protection against radiation-induced liver injury by antioxidative process, vasculature protection, hepatocyte differentiation, and trophic effects. Biomed Res Int 2013:151679. https://doi.org/10.1155/2013/151679

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ono M, Ohkouchi S, Kanehira M, Tode N, Kobayashi M, Ebina M, Nukiwa T, Irokawa T, Ogawa H, Akaike T (2015) Mesenchymal stem cells correct inappropriate epithelial–mesenchyme relation in pulmonary fibrosis using stanniocalcin-1. Mol Ther 23:549–560. https://doi.org/10.1038/mt.2014.217

    Article  CAS  PubMed  Google Scholar 

  54. Dong LH, Jiang YY, Liu YJ, Cui S, Xia CC, Qu C, Jiang X, Qu YQ, Chang PY, Liu F (2015) The anti-fibrotic effects of mesenchymal stem cells on irradiated lungs via stimulating endogenous secretion of HGF and PGE2. Sci Rep 5:8713. https://doi.org/10.1038/srep08713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang X, Wang H, Lu J, Feng Z, Liu Z, Song H, Wang H, Zhou Y, Xu J (2020) Erythropoietin-modified mesenchymal stem cells enhance anti-fibrosis efficacy in mouse liver fibrosis model. Tissue Eng Regen Med 3:1–11. https://doi.org/10.1007/s13770-020-00276-2

    Article  CAS  Google Scholar 

  56. Jang YJ, An SY, Kim JH (2017) Identification of MFGE8 in mesenchymal stem cell secretome as an anti-fibrotic factor in liver fibrosis. BMB Rep 50:58–59. https://doi.org/10.5483/BMBRep.2017.50.2.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. An SY, Jang YJ, Lim HJ, Han J, Lee J, Lee G, Park J, Park SY, Kim JH, Do BR (2017) Milk fat globule-EGF factor 8, secreted by mesenchymal stem cells, protects against liver fibrosis in mice. Gastroenterology 152:1174–1186. https://doi.org/10.1053/j.gastro.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  58. Wu Y, Peng Y, Gao D, Feng C, Yuan X, Li H, Wang Y, Yang L, Huang S, Fu X (2015) Mesenchymal stem cells suppress fibroblast proliferation and reduce skin fibrosis through a TGF-β3-dependent activation. Int J Low Extrem Wounds 14:50–62. https://doi.org/10.1177/1534734614568373

    Article  CAS  PubMed  Google Scholar 

  59. Ma Z, Song G, Zhao D, Liu D, Liu X, Dai Y, He Z, Qian D, Gong J, Meng H, Zhou BO, Yang T, Song Z (2019) Bone marrow-derived mesenchymal stromal cells ameliorate severe acute pancreatitis in rats via hemeoxygenase-1-mediated anti-oxidant and anti-inflammatory effects. Cytotherapy 21:162–174. https://doi.org/10.1016/j.jcyt.2018.11.013

    Article  CAS  PubMed  Google Scholar 

  60. Whone AL, Kemp K, Sun M, Wilkins A, Scolding NJ (2012) Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res 1431:86–96. https://doi.org/10.1016/j.brainres.2011.10.038

    Article  CAS  PubMed  Google Scholar 

  61. Morel E, Mehrpour M, Botti J, Dupont N, Hamai A, Nascimbeni AC, Codogno P (2017) Autophagy: a druggable process. Annu Rev Pharmacol Toxicol 57:375–398. https://doi.org/10.1146/annurev-pharmtox-010716-104936

    Article  CAS  PubMed  Google Scholar 

  62. Sridhar S, Botbol Y, Macian F, Cuervo AM (2012) Autophagy and disease: always two sides to a problem. J Pathol 226:255–273. https://doi.org/10.1002/path.3025

    Article  PubMed  Google Scholar 

  63. Yu L, Chen Y, Tooze SA (2018) Autophagy pathway: cellular and molecular mechanisms. Autophagy 14:207–215. https://doi.org/10.1080/15548627.2017.1378838

    Article  CAS  PubMed  Google Scholar 

  64. Hurley JH, Young LN (2017) Mechanisms of autophagy initiation. Annu Rev Biochem 86:225–244. https://doi.org/10.1146/annurev-biochem-061516-044820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Backer JM (2016) The intricate regulation and complex functions of the class III phosphoinositide 3-kinase Vps34. Biochem J 473:2251–2271. https://doi.org/10.1042/BCJ20160170

    Article  CAS  PubMed  Google Scholar 

  66. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435. https://doi.org/10.1152/physrev.00030.2009

    Article  CAS  PubMed  Google Scholar 

  67. Jhanwar-Uniyal M, Jeevan D, Neil J, Shannon C, Albert L, Murali R (2013) Deconstructing mTOR complexes in regulation of Glioblastoma Multiforme and its stem cells. Adv Biol Regul 53:202–210. https://doi.org/10.1016/j.jbior.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  68. Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies FM, Rubinsztein DC (2016) Mammalian autophagy: how does it work? Annu Rev Biochem 85:685–713. https://doi.org/10.1146/annurev-biochem-060815-014556

    Article  CAS  PubMed  Google Scholar 

  69. Mukhopadhyay S, Panda PK, Sinha N, Das DN, Bhutia SK (2014) Autophagy and apoptosis: where do they meet? Apoptosis 19:555–566. https://doi.org/10.1007/s10495-014-0967-2

    Article  CAS  PubMed  Google Scholar 

  70. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461. https://doi.org/10.1126/science.1196371

    Article  CAS  PubMed  Google Scholar 

  71. Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q, Guan KL (2013) Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152:290–303. https://doi.org/10.1016/j.cell.2012.12.016

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chappell WH, Steelman LS, Long JM, Kempf RC, McCubrey JA (2011) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2:135–164. https://doi.org/10.18632/oncotarget.240

    Article  PubMed  PubMed Central  Google Scholar 

  73. Denisenko TV, Pivnyuk AD, Zhivotovsky B (2018) p53-Autophagy-Metastasis Link. Cancers (Basel) 10:148. https://doi.org/10.3390/cancers10050148

    Article  CAS  Google Scholar 

  74. Fleming A, Noda T, Yoshimori T, Rubinsztein DC (2011) Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 7:9–17. https://doi.org/10.1038/nchembio.500

    Article  CAS  PubMed  Google Scholar 

  75. Kornicka K, Kocherova I, Marycz K (2017) The effects of chosen plant extracts and compounds on mesenchymal stem cells-a bridge between molecular nutrition and regenerative medicine-concise review. Phytother Res 31:947–958. https://doi.org/10.1002/ptr.5812

    Article  PubMed  Google Scholar 

  76. Wang B, Lin Y, Hu Y, Shan W, Liu S, Xu Y, Zhang H, Cai S, Yu X, Cai Z, Huang H (2017) mTOR inhibition improves the immunomodulatory properties of human bone marrow mesenchymal stem cells by inducing COX-2 and PGE2. Stem Cell Res Ther 8:292. https://doi.org/10.1186/s13287-017-0744-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gao L, Cen S, Wang P, Xie Z, Liu Z, Deng W, Su H, Wu X, Wang S, Li J (2016) Autophagy improves the immunosuppression of CD4+ T cells by mesenchymal stem cells through transforming growth factor-β1. Stem Cells Transl Med 5:1496–1505. https://doi.org/10.5966/sctm.2015-0420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gu Z, Wei T, Ji J (2016) Rapamycin reverses the senescent phenotype and improves immunoregulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway. Aging 8:1102–1114. https://doi.org/10.18632/aging.100925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dang S, Xu H, Xu C, Cai W, Li Q, Cheng Y, Jin M, Wang RX, Peng Y, Zhang Y, Wu C, He X, Wan B, Zhang Y (2014) Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis. Autophagy 10:1301–1315. https://doi.org/10.4161/auto.28771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wan Y, Zhuo N, Li Y, Zhao W, Jiang D (2017) Autophagy promotes osteogenic differentiation of human bone marrow mesenchymal stem cell derived from osteoporotic vertebrae. Biochem Biophys Res Commun 488:46–52. https://doi.org/10.1016/j.bbrc.2017.05.004

    Article  CAS  PubMed  Google Scholar 

  81. Lee JH, Jeong JK, Park SY (2018) AMPK activation mediated by hinokitiol inhibits adipogenic differentiation of mesenchymal stem cells through autophagy flux. Int J Endocrinol 2018:1–12. https://doi.org/10.1155/2018/2014192

    Article  CAS  Google Scholar 

  82. Chen MW, Hu Y, Hou YH, Li MH, Chen MH, Mu CY, Tao BL, Zhu W, Luo Z, Cai KY (2019) Differentiation regulation of mesenchymal stem cells via autophagy induced by structurally-different silica based nanobiomaterials. J Mater Chem B 7:2657–2666. https://doi.org/10.1039/c9tb00040b

    Article  CAS  PubMed  Google Scholar 

  83. Li Y, Wang C, Zhang G, Wang X, Duan R, Gao H, Peng T, Teng J, Jia Y (2014) Role of autophagy and mTOR signaling in neural differentiation of bone marrow mesenchymal stem cells. Cell Biol Int 38:1337–1343. https://doi.org/10.1002/cbin.10320

    Article  CAS  PubMed  Google Scholar 

  84. Zhang GY, Jia YJ, Wang J, San-Song LI, Tang GH, Wang MM, Wang YW, Zhu DN (2017) Lithium chloride promotes neuronal differentiation of rat bone marrow mesenchymal stem cells by modulating autophagy. Chin J Pathophysiol 33:2128–2133 (in chinese). https://doi.org/10.3969/j.issn.1000-4718.2017.12.003

    Article  Google Scholar 

  85. Park S, Choi Y, Jung N, Kim J, Oh S, Yu Y, Ahn JH, Jo I, Choi BO, Jung SC (2017) Autophagy induction in the skeletal myogenic differentiation of human tonsil-derived mesenchymal stem cells. Int J Mol Med 39:831–840. https://doi.org/10.3892/ijmm.2017.2898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang X, Lin Q, Zhang T, Wang X, Cheng K, Gao M, Xia P, Li X (2019) Low-intensity pulsed ultrasound promotes chondrogenesis of mesenchymal stem cells via regulation of autophagy. Stem Cell Res Ther 10:41–51. https://doi.org/10.1186/s13287-019-1142-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hou J, Han ZP, Jing YY, Yang X, Zhang SS, Sun K, Hao C, Meng Y, Yu FH, Liu XQ, Shi YF, Wu MC, Zhang L, Wei LX (2013) Autophagy prevents irradiation injury and maintains stemness through decreasing ROS generation in mesenchymal stem cells. Cell Death Dis 4:e844. https://doi.org/10.1038/cddis.2013.338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Qian Z, Yue-Jin Y, Hong W, Qiu-Ting D, Tian-Jie W, Hai-Yan Q, Hui X (2012) Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells Dev 21:1321. https://doi.org/10.1089/scd.2011.0684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Long W, Jing F, Yan-Shui L, Yun-Shan G, Bo G, Qi-Yue S, Bo-Yuan W, Li C, Liu Y, Jian L (2015) Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells. Mol Med Rep 11:2711–2716. https://doi.org/10.3892/mmr.2014.3099

    Article  CAS  Google Scholar 

  90. Wang L, Zhang HY, Gao B, Shi J, Huang Q, Han YH, Hu YQ, Lu WG, Zhao ZJ, Liu BH (2016) Tetramethylpyrazine protects against glucocorticoid-induced apoptosis by promoting autophagy in mesenchymal stem cells and improves bone mass in glucocorticoid-induced osteoporosis rats. J Orthop Transl 7:137–137. https://doi.org/10.1016/j.jot.2016.06.211

    Article  Google Scholar 

  91. Yang CM, Huang YJ, Hsu SH (2015) Enhanced autophagy of adipose-derived stem cells grown on chitosan substrates. BioRes Open Access 4:89–96. https://doi.org/10.1089/biores.2014.0032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu Y, Wang N, Zhang S, Liang Q (2018) Autophagy protects bone marrow mesenchymal stem cells from palmitate-induced apoptosis through the ROS-JNK/p38 MAPK signaling pathways. Mol Med Rep 18:1485–1494. https://doi.org/10.3892/mmr.2018.9100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Choi JH, Lyu SY, Lee HJ, Jung J, Park WB, Kim GJ (2012) Korean mistletoe lectin regulates self-renewal of placenta-derived mesenchymal stem cells via autophagic mechanisms. Cell Prolif 45:420–429. https://doi.org/10.1111/j.1365-2184.2012.00839.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang M, Du Y, Lu R, Shu Y, Zhao W, Li Z, Zhang Y, Liu R, Yang T, Luo S (2016) Cholesterol retards senescence in bone marrow mesenchymal stem cells by modulating autophagy and ROS/p53/p21 Cip1/Waf1 pathway. Oxidative Med Cell Longev 2016:7524308. https://doi.org/10.1155/2016/7524308

    Article  CAS  Google Scholar 

  95. Yun SP, Han YS, Lee JH, Kim SM, Lee SH (2017) Melatonin rescues mesenchymal stem cells from senescence induced by the uremic toxin p-cresol via inhibiting mTOR-dependent autophagy. Biomol Ther 26:389–398. https://doi.org/10.4062/biomolther.2017.071

    Article  CAS  Google Scholar 

  96. Chang TC, Hsu MF, Wu KK (2015) High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy. PLoS One 10:e0126537. https://doi.org/10.1371/journal.pone.0126537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lv B, Hua T, Li F, Han J, Fang J, Xu L, Sun C, Zhang Z, Feng Z, Jiang X (2017) Hypoxia-inducible factor 1 α protects mesenchymal stem cells against oxygen-glucose deprivation-induced injury via autophagy induction and PI3K/AKT/mTOR signaling pathway. Am J Transl Res 9:2492–2499

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee Y, Jung J, Cho KJ, Lee SK, Park JW, Oh IH, Kim GJ (2013) Increased SCF/c-kit by hypoxia promotes autophagy of human placental chorionic plate-derived mesenchymal stem cells via regulating the phosphorylation of mTOR. J Cell Biochem 114:79–88. https://doi.org/10.1002/jcb.24303

    Article  CAS  PubMed  Google Scholar 

  99. Agrahari G, Sah SK, Kim TY (2018) Superoxide dismutase 3 protects mesenchymal stem cells through enhanced autophagy and regulation of FoxO3a trafficking. BMB Rep 51:344–349. https://doi.org/10.5483/BMBRep.2018.51.7.078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Samuel H, Shi X, Johnson MH, Hamrick MW, Isales CM, Hill WD, Stan G (2013) Stromal cell-derived factor-1β mediates cell survival through enhancing autophagy in bone marrow-derived mesenchymal stem cells. PLoS One 8:e58207. https://doi.org/10.1371/journal.pone.0058207

    Article  CAS  Google Scholar 

  101. Wei W, An Y, An Y, Fei D, Wang Q (2018) Activation of autophagy in periodontal ligament mesenchymal stem cells promotes angiogenesis in periodontitis. J Periodontol 89:718–727. https://doi.org/10.1002/JPER.17-0341

    Article  CAS  PubMed  Google Scholar 

  102. Liu J, Hao H, Huang H, Tong C, Ti D, Dong L, Chen D, Zhao Y, Liu H, Han W (2015) Hypoxia regulates the therapeutic potential of mesenchymal stem cells through enhanced autophagy. Int J Low Extrem Wounds 14:63–72. https://doi.org/10.1177/1534734615573660

    Article  CAS  PubMed  Google Scholar 

  103. Kim KW, Moon SJ, Park MJ, Kim BM, Kim EK, Lee SH, Lee EJ, Chung BH, Yang CW, Cho ML (2015) Optimization of adipose tissue-derived mesenchymal stem cells by rapamycin in a murine model of acute graft-versus-host disease. Stem Cell Res Ther 6:202. https://doi.org/10.1186/s13287-015-0197-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang HY, Li C, Liu WH, Deng FM, Ma Y, Guo LN, Kong H, Hu KA, Liu Q, Wu J, Sun J, Liu YL (2020) Autophagy inhibition via Becn1 downregulation improves the mesenchymal stem cells antifibrotic potential in experimental liver fibrosis. J Cell Physiol 235:2722–2737. https://doi.org/10.1002/jcp.29176

    Article  CAS  PubMed  Google Scholar 

  105. Zheng Y, Lei Y, Hu C, Hu C (2016) p53 regulates autophagic activity in senescent rat mesenchymal stromal cells. Exp Gerontol 75:64–71. https://doi.org/10.1016/j.exger.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  106. Pantovic A, Krstic A, Janjetovic K, Kocic J, Harhaji-Trajkovic L, Bugarski D, Trajkovic V (2013) Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells. Bone 52:524–531. https://doi.org/10.1016/j.bone.2012.10.024

    Article  CAS  PubMed  Google Scholar 

  107. Song BQ, Chi Y, Li X, Du WJ, Han ZB, Tian JJ, Li JJ, Chen F, Wu HH, Han LX, Lu SH, Zheng YZ, Han ZC (2015) Inhibition of notch signaling promotes the adipogenic differentiation of mesenchymal stem cells through autophagy activation and PTEN-PI3K/AKT/mTOR pathway. Cell Physiol Biochem 36:1991–2002. https://doi.org/10.1159/000430167

    Article  CAS  PubMed  Google Scholar 

  108. Williams RS, Cheng L, Mudge AW, Harwood AJ (2002) A common mechanism of action for three mood-stabilizing drugs. Nature 417:292–295. https://doi.org/10.1038/417292a

    Article  CAS  PubMed  Google Scholar 

  109. Zou J, Yue XY, Zheng SC, Zhang G, Chang H, Liao YC, Zhang Y, Xue MQ, Qi Z (2014) Cholesterol modulates function of connexin 43 gap junction channel via PKC pathway in H9c2 cells. Biochim Biophys Acta 1838:2019–2025. https://doi.org/10.1016/j.bbamem.2014.04.016

    Article  CAS  PubMed  Google Scholar 

  110. Boyette LB, Creasey OA, Guzik L, Lozito T, Tuan RS (2014) Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Transl Med 3:241–254. https://doi.org/10.5966/sctm.2013-0079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate to the college of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.

Author information

Authors and Affiliations

Authors

Contributions

JQ.D. and LJ.Z. wrote the manuscript. ZH.Z., CW.G. and XY.H. edited the manuscript. SM.Y., JL.D., SZ.C., ZH.R., ZC.Z. and LH.S. supervised this work. Jiaqiang Deng and Lijun Zhong contributed equally to this work.

Corresponding author

Correspondence to Shumin Yu.

Ethics declarations

Conflict of interest

All the authors who have taken part in this study declared that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Zhong, L., Zhou, Z. et al. Autophagy: a promising therapeutic target for improving mesenchymal stem cell biological functions. Mol Cell Biochem 476, 1135–1149 (2021). https://doi.org/10.1007/s11010-020-03978-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03978-2

Keywords

Navigation