Skip to main content
Log in

On Painlevé/gauge theory correspondence

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We elucidate the relation between Painlevé equations and four-dimensional rank one \(\mathcal {N} = 2\) theories by identifying the connection associated with Painlevé isomonodromic problems with the oper limit of the flat connection of the Hitchin system associated with gauge theories and by studying the corresponding renormalization group flow. Based on this correspondence, we provide long-distance expansions at various canonical rays for all Painlevé \(\tau \)-functions in terms of magnetic and dyonic Nekrasov partition functions for \(\mathcal {N} = 2\) SQCD and Argyres–Douglas theories at self-dual Omega background \(\epsilon _1 + \epsilon _2 = 0\) or equivalently in terms of \(c=1\) irregular conformal blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. See for example [22] for an introduction to the subject.

  2. A more conventional labeling of different PIII equations uses the rational surfaces describing appropriate spaces of initial conditions; in this notation, \(\mathrm{PIII}_1=\mathrm{PIII}(D_6)\), \(\mathrm{PIII}_2=\mathrm{PIII}(D_7)\), \(\mathrm{PIII}_3=\mathrm{PIII}(D_8)\).

  3. One way to describe \(\{\vec {t}\}\) is to combine the positions \(\{z_{\nu }\}\) of singular points with diagonal elements of \(\varTheta _{\nu ,-r_{\nu }},\ldots ,\varTheta _{\nu ,-1}\).

  4. Here the degree of the puncture is the order of a pole appearing in \(\frac{1}{2} \text {Tr} \mathbf {A}^2 \) and not the degree \(r_{\nu }\) of \(\mathbf {A}\) which appears in (2.4). In particular, a generic regular singularity has degree 2.

  5. We will restrict here on type \(A_1\) theories since this is the relevant case for Painlevé equations.

  6. A similar story is valid at \(\zeta = \infty \) (or complex structure K) where we obtain an anti-Higgs bundle.

  7. In [40], the associated geometries of the Painlevé equations have been identified with the Seiberg–Witten curves in the original form [1, 2]. The curves \(y^2 = \phi _2\) listed here are obtained by the coordinate transformations from the latter and thus describe the same geometries. We would like to thank a referee of LMP for pointing out the reference.

  8. These fields are known as holonomic fields, or twist fields, or spin fields. See [50] for a discussion on the relation between spin fields in Ising model and \(\tau \)-functions in terms of the “new supersymmetric index.”

  9. A similar expression also appeared as the partition function for the I-brane system of [52,53,54].

  10. Attempts to these computations in CFT language can be found in [19, 58].

  11. Consequently also the pair \((\sigma , \rho )\) will be matched to \(a/\epsilon \), \(a_D/\epsilon \) differently according to the strongly coupled point we are considering.

  12. We will not discuss the Lax pair for PV\(_\mathrm{deg}\); this can be found for example in [77].

References

  1. Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang–Mills theory. Nucl. Phys. B 426, 19–52 (1994). arXiv:hep-th/9407087 [Erratum: Nucl. Phys. B430, 485 (1994)]

  2. Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994). arXiv:hep-th/9408099

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Gaiotto, D.: N=2 dualities. JHEP 1208, 034 (2012). arXiv:0904.2715

    Article  ADS  Google Scholar 

  4. Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin Systems, and the WKB approximation, ArXiv e-prints (July, 2009). arXiv:0907.3987

  5. Witten, E.: Solutions of four-dimensional field theories via M theory. Nucl. Phys. B 500, 3–42 (1997). arXiv:hep-th/9703166

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Donagi, R., Witten, E.: Supersymmetric Yang–Mills theory and integrable systems. Nucl. Phys. B 460, 299–334 (1996). arXiv:hep-th/9510101

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Argyres, P.C., Douglas, M.R.: New phenomena in SU(3) supersymmetric gauge theory. Nucl. Phys. B 448, 93–126 (1995). arXiv:hep-th/9505062

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Argyres, P.C., Plesser, M.R., Seiberg, N., Witten, E.: New N=2 superconformal field theories in four-dimensions. Nucl. Phys. B 461, 71–84 (1996). arXiv:hep-th/9511154

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Its, A., Lisovyy, O., Tykhyy, Y.: Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks. Int. Math. Res. Not. 2015(18), 8903–8924 (2015). arXiv:1403.1235

    Article  MATH  Google Scholar 

  10. Levin, A.M., Olshanetsky, M.A.: Classical limit of the Knizhnik–Zamolodchikov–Bernard equations as hierarchy of isomondromic deformations: free fields approach. arXiv:hep-th/9709207

  11. Teschner, J.: Quantization of the Hitchin moduli spaces, Liouville theory, and the geometric Langlands correspondence I. Adv. Theor. Math. Phys. 15(2), 471–564 (2011). arXiv:1005.2846

    Article  MATH  MathSciNet  Google Scholar 

  12. Gorsky, A., Krichever, I., Marshakov, A., Mironov, A., Morozov, A.: Integrability and Seiberg–Witten exact solution. Phys. Lett. B 355, 466–474 (1995). arXiv:hep-th/9505035

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Edelstein, J.D., Gomez-Reino, M., Marino, M., Mas, J.: N=2 supersymmetric gauge theories with massive hypermultiplets and the Whitham hierarchy. Nucl. Phys. B 574, 587–619 (2000). arXiv:hep-th/9911115

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Nekrasov, N., Okounkov, A.: Seiberg–Witten theory and random partitions. Prog. Math. 244, 525–596 (2006). arXiv:hep-th/0306238

    Article  MATH  MathSciNet  Google Scholar 

  15. Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010). arXiv:0906.3219

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Gaiotto, D.: Asymptotically free \({\cal{N}} = 2\) theories and irregular conformal blocks. J. Phys: Conf. Ser. 462(1), 012014 (2013). arXiv:0908.0307

    Google Scholar 

  17. Bonelli, G., Maruyoshi, K., Tanzini, A.: Wild quiver gauge theories. JHEP 02, 031 (2012). arXiv:1112.1691

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Felinska, E., Jaskolski, Z., Kosztolowicz, M.: Whittaker pairs for the Virasoro algebra and the Gaiotto—BMT states. J. Math. Phys. 53, 033504 (2012). arXiv:1112.4453 [Erratum: J. Math. Phys. 53, 129902 (2012)]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Gaiotto, D., Teschner, J.: Irregular singularities in Liouville theory and Argyres–Douglas type gauge theories, I. JHEP 12, 050 (2012). arXiv:1203.1052

    Article  ADS  MathSciNet  Google Scholar 

  20. Kanno, H., Taki, M.: Generalized Whittaker states for instanton counting with fundamental hypermultiplets. JHEP 05, 052 (2012). arXiv:1203.1427

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Nishinaka, T., Rim, C.: Matrix models for irregular conformal blocks and Argyres–Douglas theories. JHEP 10, 138 (2012). arXiv:1207.4480

    Article  ADS  MathSciNet  Google Scholar 

  22. Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshënov, V.Y.: Painlevé Transcendents: The Riemann–Hilbert Approach, vol. 128 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2006)

    Book  MATH  Google Scholar 

  23. Okamoto, K.: Studies on the painlevé equations. Ann. Mat. 146(1), 337–381 (1986)

    Article  MATH  Google Scholar 

  24. Okamoto, K.: Studies on the Painlevé equations II. Fifth Painlevé equation \(PV\). Jpn. J. Math. New Ser. 13(1), 47–76 (1987)

    MATH  Google Scholar 

  25. Okamoto, K.: Studies on the Painlevé equations. III. Second and Fourth Painlevé equations \(P_{II}\) and \(P_{IV}\). Math. Ann. 275, 221–256 (1986)

    Article  MathSciNet  Google Scholar 

  26. Okamoto, K.: Studies on the Painlevé equations: IV. Third Painlevé equation \(P_{III}\). Funkc. Ekvacioj 30, 305–332 (1987)

    MATH  Google Scholar 

  27. Ohyama, Y., Kawamuko, H., Sakai, H., Okamoto, K.: Studies on the Painlevé equations: V. Third Painlevé equations of special type \(P_{III}(D_7)\) and \(P_{III}(D_8)\). J. Math. Sci. Univ. Tokyo 13, 145–204 (2006)

    MATH  MathSciNet  Google Scholar 

  28. Okamoto, K.: Sur les feuilletages associes aux equations du second ordre a points critiques fixes de P. Painlevé; espaces des conditions initiales. Jpn. J Math. New Ser. 5(1), 1–79 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sakai, H.: Rational surfaces associated with affine root systems and geometry of the Painlevé equations. Commun. Math. Phys. 220(1), 165–229 (2001)

    Article  MATH  ADS  Google Scholar 

  30. Malmquist, J.: Sur les équations différentielles du second ordre, dont l’intégrale générale a ses points critiques fixes. Ark. Mat. Astron. Fys. 17(8), 89 (1923)

    MATH  Google Scholar 

  31. Okamoto, K.: The Hamiltonians Associated to the Painlevé Equations, pp. 735–787. Springer, New York (1999)

    MATH  Google Scholar 

  32. Cosgrove, C.M., Scoufis, G.: Painlevé classification of a class of differential equations of the second order and second degree. Stud. Appl. Math. 88, 25–87 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  33. Boalch, P.: Hyperkahler manifolds and nonabelian Hodge theory of (irregular) curves. ArXiv e-prints (Mar, 2012). arXiv:1203.6607

  34. Biquard, O., Boalch, P.: Wild nonabelian Hodge theory on curves. ArXiv Mathematics e-prints (Nov, 2001) arXiv:math/0111098

  35. Krichever, I.M.: The tau function of the universal Whitham hierarchy, matrix models and topological field theories. Commun. Pure Appl. Math. 47, 437 (1994). arXiv:hep-th/9205110

    Article  MATH  Google Scholar 

  36. Nakatsu, T., Takasaki, K.: Whitham–Toda hierarchy and N=2 supersymmetric Yang–Mills theory. Mod. Phys. Lett. A 11, 157–168 (1996). arXiv:hep-th/9509162

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Itoyama, H., Morozov, A.: Integrability and Seiberg–Witten theory: curves and periods. Nucl. Phys. B 477, 855–877 (1996). arXiv:hep-th/9511126

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Gorsky, A., Marshakov, A., Mironov, A., Morozov, A.: RG equations from Whitham hierarchy. Nucl. Phys. B 527, 690–716 (1998). arXiv:hep-th/9802007

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II. Phys. D 4(1), 26–46 (1981/82)

  40. Kajiwara, K., Masuda, T., Noumi, M., Ohta, Y., Yamada, Y.: Cubic pencils and Painleve Hamiltonians. arXiv:nlin/0403009

  41. Gaiotto, D.: Opers and TBA. arXiv:1403.6137

  42. Gamayun, O., Iorgov, N., Lisovyy, O.: Conformal field theory of Painlevé VI. JHEP 10, 038 (2012). arXiv:1207.0787 [Erratum: JHEP 10, 183 (2012)]

  43. Gamayun, O., Iorgov, N., Lisovyy, O.: How instanton combinatorics solves Painlevé VI, V and IIIs. J. Phys. A Math. Gen. 46, G5203 (2013). arXiv:1302.1832

  44. Iorgov, N., Lisovyy, O., Teschner, J.: Isomonodromic tau-functions from Liouville conformal blocks. Commun. Math. Phys. 336(2), 671–694 (2015). arXiv:1401.6104

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. Bershtein, M.A., Shchechkin, A.I.: Bilinear equations on Painlevé \(\tau \) functions from CFT. Commun. Math. Phys. 339(3), 1021–1061 (2015). arXiv:1406.3008

    Article  MATH  ADS  Google Scholar 

  46. Gavrylenko, P., Lisovyy, O.: Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions. ArXiv e-prints (Aug, 2016). arXiv:1608.0095

  47. Moore, G.: Geometry of the string equations. Commun. Math. Phys. 133(2), 261–304 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. Gavrylenko, P.G., Marshakov, A.V.: Free fermions, W-algebras and isomonodromic deformations. Theor. Math. Phys. 187(2), 649–677 (2016). arXiv:1605.0455 [Teor. Mat. Fiz. 187(2), 232 (2016)]

  49. Sato, M., Miwa, T., Jimbo, M.: Studies on holonomic quantum fields, II. Proc. Jpn. Acad. Ser. A Math. Sci. 53(10), 147–152 (1977)

    Article  MathSciNet  Google Scholar 

  50. Cecotti, S., Vafa, C.: Ising model and N=2 supersymmetric theories. Commun. Math. Phys. 157, 139–178 (1993). arXiv:hep-th/9209085

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. Jimbo, M.: Monodromy problem and the boundary condition for some Painlevé equations. Publ. Res. Inst. Math. Sci. 18(3), 1137–1161 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  52. Dijkgraaf, R., Hollands, L., Sulkowski, P., Vafa, C.: Supersymmetric gauge theories, intersecting branes and free fermions. JHEP 02, 106 (2008). arXiv:0709.4446

    Article  ADS  MathSciNet  Google Scholar 

  53. Bonelli, G., Maruyoshi, K., Tanzini, A.: Quantum Hitchin systems via beta-deformed matrix models. arXiv:1104.4016

  54. Aganagic, M., Cheng, M.C.N., Dijkgraaf, R., Krefl, D., Vafa, C.: Quantum geometry of refined topological strings. JHEP 11, 019 (2012). arXiv:1105.0630

    Article  ADS  MathSciNet  Google Scholar 

  55. Nekrasov, N.A.: Seiberg–Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7(5), 831–864 (2003). arXiv:hep-th/0206161

    Article  MATH  MathSciNet  Google Scholar 

  56. Flume, R., Poghossian, R.: An algorithm for the microscopic evaluation of the coefficients of the Seiberg–Witten prepotential. Int. J. Mod. Phys. A 18, 2541 (2003). arXiv:hep-th/0208176

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. Bruzzo, U., Fucito, F., Morales, J.F., Tanzini, A.: Multiinstanton calculus and equivariant cohomology. JHEP 05, 054 (2003). arXiv:hep-th/0211108

    Article  ADS  Google Scholar 

  58. Nagoya, H.: Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations. J. Math. Phys. 56, 123505 (2015). arXiv:1505.0239

    Article  MATH  ADS  MathSciNet  Google Scholar 

  59. Kapaev, A.A.: Asymptotic behavior of the solutions of the Painlevé equation of the first kind. Diff. Equ. 24, 1684–1695 (1988). (in Russian)

    MathSciNet  Google Scholar 

  60. Kapaev, A.A., Kitaev, A.V.: Connection formulae for the first Painlevé transcendent in the complex domain. Lett. Math. Phys. 27, 243–252 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  61. Flaschka, H., Newell, A.C.: Monodromy- and spectrum-preserving deformations. I. Commun. Math. Phys. 76(1), 65–116 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  62. Its, A., Lisovyy, O., Prokhorov, A.: Monodromy dependence and connection formulae for isomonodromic tau functions. ArXiv e-prints (Apr, 2016). arXiv:1604.0308

  63. Nagoya, H.: Conformal blocks and Painlevé functions. ArXiv e-prints. arXiv:1611.0897

  64. Masuda, T., Suzuki, H.: Periods and Prepotential of N = 2 SU(2) Supersymmetric Yang-Mills Theory with Massive Hypermultiplets. Int. J. Mod. Phys. A 12, 3413–3431 (1997). arXiv:hep-th/9609066

    Article  MATH  ADS  MathSciNet  Google Scholar 

  65. Huang, M.-x., Klemm, A.: Holomorphic anomaly in gauge theories and matrix models. J. High Energy Phys. 9, 54 (2007). arXiv:hep-th/0605195

  66. Huang, M.-X., Klemm, A.: Holomorphicity and modularity in Seiberg–Witten theories with matter. J. High Energy Phys. 7, 83 (2010). arXiv:0902.1325

  67. Boalch, P.: Quivers and difference Painlevé equations. ArXiv e-prints (June, 2007). arXiv:0706.2634

  68. Minahan, J.A., Nemeschansky, D.: An N = 2 superconformal fixed point with E\(_{6}\) global symmetry. Nucl. Phys. B 482, 142–152 (1996). arXiv:hep-th/9608047

    Article  MATH  ADS  MathSciNet  Google Scholar 

  69. Minahan, J.A., Nemeschansky, D.: Superconformal fixed points with E\(_{n}\) global symmetry. Nucl. Phys. B 489, 24–46 (1997). arXiv:hep-th/9610076

    Article  MATH  ADS  MathSciNet  Google Scholar 

  70. Seiberg, N.: Five dimensional SUSY field theories, non-trivial fixed points and string dynamics. Phys. Lett. B 388, 753–760 (1996). arXiv:hep-th/9608111

    Article  ADS  MathSciNet  Google Scholar 

  71. Kim, S.-S., Yagi, F.: 5d E\(_{n}\) Seiberg–Witten curve via toric-like diagram. JHEP 06, 082 (2015). arXiv:1411.7903

    Article  ADS  MathSciNet  Google Scholar 

  72. Bershtein, M.A., Shchechkin, A.I.: \(q\)-deformed Painlevé tau function and \(q\)-deformed conformal blocks. ArXiv e-prints (Aug, 2016). arXiv:1608.0256

  73. Bonelli, G., Grassi, A., Tanzini, A.: To appear

  74. Awata, H., Yamada, Y.: Five-dimensional AGT conjecture and the deformed Virasoro algebra. JHEP 01, 125 (2010). arXiv:0910.4431

    Article  MATH  ADS  MathSciNet  Google Scholar 

  75. Gavrylenko, P.: Isomonodromic \(\tau \)-functions and W\(_{ N }\) conformal blocks. J. High Energy Phys.9, 167 (2015). arXiv:1505.0025

  76. Bonelli, G., Grassi, A., Tanzini, A.: Seiberg–Witten theory as a Fermi gas. arXiv:1603.0117

  77. van der Put, M., Saito, M.-H.: Moduli spaces for linear differential equations and the Painlevé equations. ArXiv e-prints (2009). arXiv:0902.1702

Download references

Acknowledgements

We would like to thank Misha Bershtein, Sergio Cecotti, Bernard Julia, Piljin Yi for fruitful and insightful discussions. K. M. and A. T. would like to thank the theory group in École Normale Supérieure for warm hospitality. K. M. would like to thank ICTP and SISSA for kind hospitality during the course of the project. A.S. would like to thank the Perimeter Institute for its very kind hospitality during the course of this project. This research was supported in part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation. The work of G.B. is supported by the INFN Iniziativa Specifica ST&FI. The work of A.T. is supported by the INFN Iniziativa Specifica GAST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunobu Maruyoshi.

Appendices

Appendix A: Long-distance expansions for \(\hbox {PIII}_{1,2,3}\) and PV

In this appendix, we collect the long-distance expansions for the \(\tau \)-functions of \(\hbox {PIII}_3\), \(\hbox {PIII}_2\), \(\hbox {PIII}_1\) and PV which were not considered in Sect. 3.

1.1 Painlevé III\(_{3}\)

A convenient Lax pair for \(\hbox {PIII}_{3}\) can be obtained by slightly modifying the one given in [77] and is given by

$$\begin{aligned} \mathbf{A}= & {} A_0 + \dfrac{A_1}{z} + \dfrac{A_2}{z^2} = \left( \begin{array}{cc} \frac{pq}{z} &{}\quad 1-\frac{t}{zq} \\ \frac{1}{z} - \frac{q}{z^2} &{}\quad -\frac{pq}{z} \end{array} \right) , \end{aligned}$$
(A.1)
$$\begin{aligned} \mathbf{B}= & {} B_0 + \dfrac{B_1}{z} = \left( \begin{array}{cc} 0 &{} \quad \frac{1}{q} \\ \frac{q}{t z} &{} \quad 0 \end{array} \right) . \end{aligned}$$
(A.2)

The compatibility condition (2.8) requires

$$\begin{aligned} \left\{ \begin{array}{l} \dot{q} = -\dfrac{2pq^2}{t} + \dfrac{q}{t}, \\ \dot{p} = \dfrac{2pq^2}{t} - \dfrac{p}{t} + \dfrac{1}{q^2} - \dfrac{1}{t} , \end{array} \right. \end{aligned}$$
(A.3)

and leads to the \(\hbox {PIII}_{3}\) equation

$$\begin{aligned} \ddot{q} = \dfrac{\dot{q}^2}{q} - \dfrac{\dot{q}}{t} + \dfrac{2q^2}{t^2} - \dfrac{2}{t}. \end{aligned}$$
(A.4)

We can now take the trace

$$\begin{aligned} \dfrac{1}{2} {\text {Tr}}{} \mathbf{A}^2 = \dfrac{t}{z^3} + \dfrac{\sigma _{\mathrm{III}_3}(t)}{z^2} + \dfrac{1}{z}, \end{aligned}$$
(A.5)

where

$$\begin{aligned} \sigma _{\mathrm{III}_3}(t) = p^2q^2 - q - \dfrac{t}{q}. \end{aligned}$$
(A.6)

The function \(\sigma _{\mathrm{III}_3}(t) = t\frac{\mathrm{d}}{\mathrm{d}t} \ln \tau _{\mathrm{III}_3}(t)\) satisfies the \(\sigma \)-\(\hbox {PIII}_{3}\) Painlevé equation

$$\begin{aligned} (t\ddot{\sigma }_{\mathrm{III}_3})^2 = 4 (\dot{\sigma }_{\mathrm{III}_3})^2 \left( \sigma _{\mathrm{III}_3} - t \dot{\sigma }_{\mathrm{III}_3} \right) - 4 \dot{\sigma }_{\mathrm{III}_3} \end{aligned}$$
(A.7)

with respect to the dynamics given by (A.3). We find the following expansions for \(\tau _{\mathrm{III}_3}(t)\) as \(t\rightarrow +\infty \), cf [9, Eqs. (3.13)–(3.15)]:

\(\varvec{\tau }\) -PIII \(_{\mathbf{3}}\) expansion

The asymptotic expansion of the tau function on the ray arg\(\,t = 0\) (i.e., \(s \in \mathbb {R}\)) reads

$$\begin{aligned} \begin{aligned} \tau _{\mathrm{III}_3}(t)&= s^{\frac{1}{6}} \sum _{n \in \mathbb {Z}} e^{i n \rho } \mathcal {G}(\nu + n, s),\quad t = 2^{-12}s^4, \\ \mathcal {G}(\nu , s)&= C(\nu ,s) \left[ 1 + \sum _{k=1}^{\infty } \dfrac{D_k(\nu )}{s^k} \right] , \\ C(\nu ,s)&= (2\pi )^{-\frac{\nu }{2}} e^{\frac{s^2}{16} + i \nu s + \frac{i \pi \nu ^2}{4}} s^{\frac{1}{12} - \frac{\nu ^2}{2}} 2^{-\nu ^2} G(1+\nu ), \end{aligned} \end{aligned}$$
(A.8)

where the first few coefficients are given by

$$\begin{aligned} \begin{aligned} D_1(\nu )&= - \dfrac{i \nu (2 \nu ^2 - 1)}{8}, \\ D_2(\nu )&= - \dfrac{\nu ^2 (4\nu ^4 + 16 \nu ^2 - 11)}{128}. \end{aligned} \end{aligned}$$
(A.9)

From the number of Barnes functions, we see that there is only one light particle in this sector. We therefore get

$$\begin{aligned} \ln \left[ \mathcal {G}\left( \frac{\nu }{\epsilon }, \frac{s}{\epsilon }\right) \right] = \sum _{g \geqslant 0} \epsilon ^{2g-2} \mathcal {F}_g(\nu , s) \end{aligned}$$
(A.10)

with

$$\begin{aligned} \begin{aligned} \mathcal {F}_0(\nu , s)&= \dfrac{s^2}{16} + i \nu s + \dfrac{\nu ^2}{2} \ln \dfrac{i \nu }{4 s} - \dfrac{3\nu ^2}{4} - \dfrac{i \nu ^3}{4 s} - \dfrac{5 \nu ^4}{32 s^2} + O(s^{-3}),\\ \mathcal {F}_1(\nu , s)&= \zeta '(-1) - \dfrac{1}{12}\ln \dfrac{\nu }{s} + \dfrac{i \nu }{8 s} + \dfrac{3 \nu ^2}{32 s^2} + O(s^{-3}), \\ \mathcal {F}_2(\nu , s)&= - \dfrac{1}{240 \nu ^2} + O(s^{-3}), \\ \mathcal {F}_g(\nu , s)&= \ldots . \end{aligned} \end{aligned}$$
(A.11)

1.2 Painlevé III\(_{2}\)

Again, we will take as the Lax pair for \(\hbox {PIII}_{2}\) the one obtained by slightly modifying the Lax pair given in [77]; explicitly, we have

$$\begin{aligned} \mathbf{A}= & {} A_0 + \dfrac{A_1}{z} + \dfrac{A_2}{z^2} \nonumber \\= & {} \left( \begin{array}{cc} \frac{t}{2} + \frac{\theta _*}{z} + \frac{2 p q^2 - 2 q\theta _* - t q^2}{2z^2} &{} \quad \frac{4p^2 q^4 - 4tpq^4 +t^2 q^4 -4q^2 \theta _*^2 - 4q}{4 q^2 z} + \frac{\left( 2pq^2 - tq^2 - 2q\theta _* \right) ^2}{4 q z^2} \\ \frac{1}{z} - \frac{q}{z^2} &{}\quad - \frac{t}{2} - \frac{\theta _*}{z} - \frac{2 p q^2 - 2 q\theta _* - t q^2}{2z^2} \end{array} \right) ,\nonumber \\ \end{aligned}$$
(A.12)
$$\begin{aligned} \mathbf{B}= & {} B_0 + B_1 z= \left( \begin{array}{cc} \frac{z}{2} + \frac{tq + 2\theta _*}{2t} &{}\quad \frac{4p^2q^4 -4tpq^4 + t^2q^4 - 4q^2 \theta _*^2 - 4q}{4tq^2} \\ \frac{1}{t} &{} \quad -\frac{z}{2} - \frac{tq + 2\theta _*}{2t} \end{array} \right) . \end{aligned}$$
(A.13)

The compatibility condition (2.8) requires

$$\begin{aligned} \left\{ \begin{array}{l} \dot{q} = -\dfrac{2pq^2}{t} ,\\ \dot{p} = \dfrac{2p^2q}{t} + \dfrac{1}{tq^2} - \dfrac{t q}{2} + \dfrac{1}{2} - \theta _* , \end{array} \right. \end{aligned}$$
(A.14)

and leads to the \(\hbox {PIII}_{2}\) equation

$$\begin{aligned} \ddot{q} = \dfrac{\dot{q}^2}{q} - \dfrac{\dot{q}}{t} + q^3 - \dfrac{q^2(1-2\theta _*)}{t} - \dfrac{2}{t^2}. \end{aligned}$$
(A.15)

The trace

$$\begin{aligned} \dfrac{1}{2} {\text {Tr}}{} \mathbf{A}^2 = \dfrac{1}{z^3} + \dfrac{\sigma _{\mathrm{III}_2}}{z^2} + \dfrac{t \theta _*}{z} + \dfrac{t^2}{4} \end{aligned}$$
(A.16)

contains the function

$$\begin{aligned} \sigma _{\mathrm{III}_2}(t) = p^2q^2 - \frac{q^2 t^2}{4} - t q \theta _* - \dfrac{1}{q}, \end{aligned}$$
(A.17)

which satisfies the \(\sigma \)-\(\hbox {PIII}_{2}\) equation

$$\begin{aligned} (t\ddot{\sigma }_{\mathrm{III}_2})^2 = 4 (\dot{\sigma }_{\mathrm{III}_2})^2 \left( \sigma _{\mathrm{III}_2} - t \dot{\sigma }_{\mathrm{III}_2} \right) - 4 \theta _* \dot{\sigma }_{\mathrm{III}_2} + 1 \end{aligned}$$
(A.18)

with respect to the dynamics generated by (A.14). By defining \(\sigma _{\mathrm{III}_2}(t) = t\frac{\mathrm{d}}{\mathrm{d}t} \ln \tau _{\mathrm{III}_2}(t)\), we find the following expansions for \(\tau _{\mathrm{III}_2}(t)\):

\(\varvec{\tau }\) -PIII \(_\mathbf{2 }\) expansion

The following asymptotic expansion is valid along the two rays arg\(\,t = \pm \frac{\pi }{2}\) (i.e., \(s \in i \mathbb {R}\)) and has the form

$$\begin{aligned} \begin{aligned} \tau _{\mathrm{III}_2}(t)&= s^{\theta _*^2}\sum _{n \in \mathbb {Z}} e^{i n \rho } \mathcal {G}(\nu + \sqrt{3} n, s), \quad 54 t = s^3, \\ \mathcal {G}(\nu , s)&= C(\nu ,s) \left[ 1 + \sum _{k=1}^{\infty } \dfrac{D_k(\nu )}{s^k} \right] , \\ C(\nu ,s)&= (2\pi )^{-\frac{\nu }{2\sqrt{3}}} e^{-\frac{s^2}{8} + \nu s + \frac{i \pi \nu ^2}{2} - \theta _* s} s^{\frac{1}{12} - \frac{\nu ^2}{6}} 2^{-\frac{\nu ^2}{3}} 3^{-\frac{\nu ^2}{4}} G\left( 1+\dfrac{\nu }{\sqrt{3}}\right) ,\qquad \end{aligned} \end{aligned}$$
(A.19)

where the first few coefficients are given by

$$\begin{aligned} D_1(\nu ) =&- \dfrac{5 \nu ^3}{108} + \dfrac{2 \theta _*}{3} \nu ^2 - \left( 2\theta _*^2 - \dfrac{13}{72} \right) \nu + \dfrac{\theta _*(4\theta _*^2 - 1)}{3}, \nonumber \\ D_2(\nu ) =\,&\dfrac{25 \nu ^6}{23328} - \dfrac{5 \theta _*}{162} \nu ^5 + \dfrac{612 \theta _*^2 - 145}{1944} \nu ^4 - \dfrac{\theta _*(113 \theta _*^2 - 68)}{81} \nu ^3 \nonumber \\&+ \left( \dfrac{26 \theta _*^4}{9} - \dfrac{35 \theta _*^2}{12} + \dfrac{767}{3456} \right) \nu ^2 - \dfrac{\theta _*(576 \theta _*^4 - 772 \theta _*^2 + 145)}{216} \nu \nonumber \\&+ \dfrac{2\theta _*^2(4\theta _*^4 - 5 \theta _*^2 + 1)}{9}. \end{aligned}$$
(A.20)

From the number of Barnes G-functions, we see that there is only one light particle in this sector. From these expressions, we deduce

$$\begin{aligned} \ln \left[ \mathcal {G}\left( \frac{\nu }{\epsilon }, \frac{\theta _*}{\epsilon }, \frac{s}{\epsilon } \right) \right] = \sum _{g \geqslant 0} \epsilon ^{2g-2} \mathcal {F}_g(\nu , \theta _*, s), \end{aligned}$$
(A.21)

where we have, for instance,

$$\begin{aligned} \mathcal {F}_0(\nu , \theta _*, s) =&\, -\dfrac{s^2}{8} + \nu s - \theta _* s + \dfrac{\nu ^2}{6} \ln \dfrac{e^{3\pi i} \nu }{36 s} - \dfrac{\nu ^2}{4} - \dfrac{5 \nu ^3}{108 s} \nonumber \\&+ \dfrac{2\theta _* \nu ^2}{3s} - \dfrac{2\theta _*^2 \nu }{s} + \dfrac{4\theta _*^3}{3s} \nonumber \\&- \dfrac{515 \nu ^4}{7776 s^2} + \dfrac{19\theta _* \nu ^3}{27 s^2} - \dfrac{7\theta _*^2 \nu ^2}{3 s^2} + \dfrac{8 \theta _*^3 \nu }{3 s^2} - \dfrac{2\theta _*^4}{3 s^2} + O(s^{-3}), \nonumber \\ \mathcal {F}_1(\nu , \theta _*, s) =&\, \zeta '(-1) - \dfrac{1}{12}\ln \dfrac{\nu }{\sqrt{3}s} + \dfrac{13 \nu }{72 s} - \dfrac{\theta _*}{3s} + \dfrac{533 \nu ^2}{2592 s^2}\nonumber \\&- \dfrac{11\theta _* \nu }{18 s^2} + \dfrac{\theta _*^2}{6s^2} + O(s^{-3}), \nonumber \\ \mathcal {F}_2(\nu , \theta _*, s) =&\, - \dfrac{1}{80 \nu ^2} + O(s^{-3}), \nonumber \\ \mathcal {F}_g(\nu , \theta _*, s) =&\, \ldots . \end{aligned}$$
(A.22)

1.3 Painlevé III\(_{1}\)

The Lax pair for \(\hbox {PIII}_{1}\) (i.e., generic Painlevé III equation) can be obtained from the one given in [39] by modifying it according to the discussion in [26]Footnote 12; explicitly, we have

$$\begin{aligned} \mathbf{A}= & {} A_0 + \dfrac{A_1}{z} + \dfrac{A_2}{z^2} \nonumber \\= & {} \, \left( \begin{array}{cc} \frac{\sqrt{t}}{2} - \frac{\theta _*}{z} + \frac{\sqrt{t}(2p-1)}{2z^2} &{} \quad -\frac{p q u}{z} - \frac{\sqrt{t} p u}{z^2} \\ \frac{2pq - 2p^2q + 2(\theta _* + \theta _{\star }) - 4p \theta _*}{2p u z} + \frac{\sqrt{t}(p-1)}{u z^2} &{} \quad - \frac{\sqrt{t}}{2} + \frac{\theta _*}{z} - \frac{\sqrt{t}(2p-1)}{2z^2} \end{array} \right) , \end{aligned}$$
(A.23)
$$\begin{aligned} \mathbf{B}= & {} \dfrac{B_0}{z} + B_1 + z B_2 = \left( \begin{array}{cc} \frac{z}{4\sqrt{t}} + \frac{1 - 2p}{4\sqrt{t} z} &{} \quad - \frac{pqu}{2t} + \frac{p u}{2\sqrt{t} z} \\ \frac{2pq - 2p^2q + 2(\theta _* + \theta _{\star }) - 4p \theta _*}{4tpu} + \frac{1 - p}{2\sqrt{t} u z} &{} \quad - \frac{z}{4\sqrt{t}} - \frac{1 - 2p}{4\sqrt{t} z} \end{array} \right) .\nonumber \\ \end{aligned}$$
(A.24)

The compatibility condition (2.8) requires

$$\begin{aligned} \left\{ \begin{array}{l} \dot{u} = \dfrac{u}{t} \left( \theta _* - \dfrac{\theta _* + \theta _{\star }}{p} -q \right) , \\ \dot{q} = 1 - \dfrac{q^2}{t} + \dfrac{2pq^2}{t} + \dfrac{2q\theta _*}{t}, \\ \dot{p} = \dfrac{2pq}{t} - \dfrac{2p^2q}{t} + \dfrac{\theta _* + \theta _{\star }}{t} - \dfrac{2p\theta _*}{t} , \end{array} \right. \end{aligned}$$
(A.25)

and leads to the \(\hbox {PIII}_{1}\) equation

$$\begin{aligned} \ddot{q} = \dfrac{\dot{q}^2}{q} - \dfrac{\dot{q}}{t} + \dfrac{q^3}{t^2} + \dfrac{2 q^2 \theta _{\star }}{t^2} + \dfrac{1-2\theta _*}{t} - \dfrac{1}{q}. \end{aligned}$$
(A.26)

The trace

$$\begin{aligned} \dfrac{1}{2} {\text {Tr}}{} \mathbf{A}^2 = \dfrac{t}{4z^4} - \dfrac{\sqrt{t} \theta _{\star }}{z^3} + \dfrac{\sigma _{\mathrm{III}_1}}{z^2} - \dfrac{\sqrt{t} \theta _*}{z} + \dfrac{t}{4} \end{aligned}$$
(A.27)

involves the function

$$\begin{aligned} \sigma _{\mathrm{III}_1}(t) = p^2q^2 - pq^2 + pt + 2pq\theta _* - q (\theta _* + \theta _{\star }) - \frac{t}{2} + \theta _*^2. \end{aligned}$$
(A.28)

This function satisfies the \(\sigma \)-form of \(\hbox {PIII}_{1}\) equation

$$\begin{aligned} (t\ddot{\sigma }_{\mathrm{III}_1})^2 = (4\dot{\sigma }_{\mathrm{III}_1}^2 - 1) \left( \sigma _{\mathrm{III}_1} - t \dot{\sigma }_{\mathrm{III}_1} \right) - 4 \theta _* \theta _{\star } \dot{\sigma }_{\mathrm{III}_1} + \theta _*^2 + \theta _{\star }^2 \end{aligned}$$
(A.29)

with respect to the dynamics given by (A.25). Introducing the tau function by \(\sigma _{\mathrm{III}_1}(t) = t\frac{\mathrm{d}}{\mathrm{d}t} \ln \tau _{\mathrm{III}_1}(t)\), we find the following expansions:

\(\varvec{\tau }\) -PIII \(_\mathbf{1 }\) expansion

The asymptotic series for \(\tau _{\mathrm{III}_1}(t)\) on the ray arg\(\,t = 0\) (i.e., \(s \in \mathbb {R}\)) has the form

$$\begin{aligned} \tau _{\mathrm{III}_1}(t) =&\, s^{-\frac{1}{6} + \theta _*^2 + \theta _{\star }^2} \sum _{n \in \mathbb {Z}} e^{i n \rho } \mathcal {G}(\nu + n, s), \quad t = \dfrac{s^2}{16}, \nonumber \\ \mathcal {G}(\nu , s) =&\, C(\nu ,s) \left[ 1 + \sum _{k=1}^{\infty } \dfrac{D_k(\nu )}{s^k} \right] , \nonumber \\ C(\nu ,s) =&\, (2\pi )^{-\nu } e^{\frac{s^2}{32} + i \nu s + \frac{i \pi \nu ^2}{2}} s^{- \nu ^2 + \frac{1}{6} + \frac{-\theta _*^2 + 2 \theta _* \theta _{\star } - \theta _{\star }^2}{4}} 2^{-\nu ^2} G\left( 1+\nu + \dfrac{\theta _* - \theta _{\star }}{2}\right) \nonumber \\&\times G\left( 1+\nu - \dfrac{\theta _* - \theta _{\star }}{2}\right) , \end{aligned}$$
(A.30)

where the first few coefficients are given by

$$\begin{aligned} D_1(\nu ) =&- i \nu \left( \nu ^2 - \dfrac{9\theta _*^2 + 14 \theta _* \theta _{\star } + 9 \theta _{\star }^2 - 2}{4} \right) , \nonumber \\ D_2(\nu ) =&- \dfrac{\nu ^6}{2} + \dfrac{9\theta _*^2 + 14 \theta _* \theta _{\star } + 9 \theta _{\star }^2 - 7}{4} \nu ^4 \nonumber \\&- \left( \dfrac{\left( 9\theta _*^2 + 14 \theta _* \theta _{\star } + 9 \theta _{\star }^2 \right) ^2}{32} - \dfrac{15\theta _*^2 + 26 \theta _* \theta _{\star } + 15 \theta _{\star }^2}{2} + \dfrac{15}{8} \right) \nu ^2 \nonumber \\&- \dfrac{(\theta _* - \theta _{\star })^2(33\theta _*^2 + 62 \theta _* \theta _{\star } + 33 \theta _{\star }^2 - 12)}{64} . \end{aligned}$$
(A.31)

The number of Barnes functions implies that this sector contains an SU(2) doublet of light particles. We then obtain

$$\begin{aligned} \ln \left[ \mathcal {G}\left( \frac{\nu }{\epsilon }, \frac{\theta _*}{\epsilon }, \frac{\theta _{\star }}{\epsilon }, \frac{s}{\epsilon } \right) \right] = \sum _{g \geqslant 0} \epsilon ^{2g-2} \mathcal {F}_g(\nu , \theta _*, \theta _{\star }, s), \end{aligned}$$
(A.32)

where, in particular,

$$\begin{aligned} \mathcal {F}_0(\nu , \theta _*, \theta _{\star }, s)= & {} \dfrac{s^2}{32} + i\nu s + \dfrac{(\nu + \theta _{*}/2 - \theta _{\star }/2)^2}{2} \ln \dfrac{\nu + \theta _{*}/2 - \theta _{\star }/2}{s} \nonumber \\&+ \dfrac{(\nu - \theta _{*}/2 + \theta _{\star }/2)^2}{2} \ln \dfrac{\nu - \theta _{*}/2 + \theta _{\star }/2}{s} - \nu ^2 \ln 2 + i \pi \dfrac{\nu ^2}{2} \nonumber \\&- \dfrac{3\nu ^2}{2} - \dfrac{3(\theta _* - \theta _{\star })^2}{8} - \dfrac{i \nu ^3}{s} + \dfrac{i(9\theta _*^2 + 14\theta _* \theta _{\star } + 9\theta _{\star }^2)\nu }{4s}\nonumber \\&- \dfrac{5 \nu ^4}{4 s^2} + \dfrac{(51\theta _*^2 + 90\theta _* \theta _{\star } + 51\theta _{\star }^2)\nu ^2}{8 s^2}\nonumber \\&- \dfrac{(\theta _* - \theta _{\star })^2(33\theta _*^2 + 62\theta _* \theta _{\star } + 33\theta _{\star }^2)}{64 s^2} + O(s^{-3}), \nonumber \\ \mathcal {F}_1(\nu , \theta _*, \theta _{\star }, s)= & {} 2 \zeta '(-1) - \dfrac{1}{12}\ln \dfrac{\nu + \theta _{*}/2 - \theta _{\star }/2}{s} - \dfrac{1}{12}\ln \dfrac{\nu - \theta _{*}/2 + \theta _{\star }/2}{s} \nonumber \\&- \dfrac{i \nu }{2 s} - \dfrac{7 \nu ^2}{4 s^2} + \dfrac{3(\theta _* - \theta _{\star })^2}{16s^2} + O(s^{-3}), \nonumber \\ \mathcal {F}_2(\nu , \theta _*, \theta _{\star }, s)= & {} - \dfrac{1}{240 (\nu + \theta _{*}/2 - \theta _{\star }/2)^2} - \dfrac{1}{240 (\nu - \theta _{*}/2 + \theta _{\star }/2)^2} + O(s^{-3}),\nonumber \\ \mathcal {F}_g(\nu , \theta _*, \theta _{\star }, s)= & {} \ldots . \end{aligned}$$
(A.33)

The asymptotic series on the ray arg\(\,t = \pi \) can be obtained from the above expansion using the symmetry \(t \rightarrow -t\), \(\theta _* \rightarrow -\theta _*\) of Painlevé III\(_{1}\). Unlike in PII, PIV and PV case below, the quadratic term in the exponential is present in both expansions.

1.4 Painlevé V

The PV Lax pair is given by [39]

$$\begin{aligned} \mathbf{A}= & {} A_0 + \dfrac{A_1}{z} + \dfrac{ A_2}{z-1} \nonumber \\= & {} \, \left( \begin{array}{ll} \frac{t}{2} + \frac{1}{z}(pq + \frac{\theta _0}{2}) - \frac{1}{z-1}(pq + \frac{\theta _0 + \theta _{\infty }}{2}) &{}\quad -u\frac{pq + \theta _0}{z} + u q\frac{pq + (\theta _0 - \theta _1 + \theta _{\infty }) /2}{z-1} \\ \frac{pq}{z u} - \frac{pq + (\theta _0 + \theta _1 + \theta _{\infty }) /2}{(z-1)qu} &{}\quad -\frac{t}{2} - \frac{1}{z}(pq + \frac{\theta _0}{2}) + \frac{1}{z-1}(pq + \frac{\theta _0 + \theta _{\infty }}{2}) \end{array} \right) ,\nonumber \\ \end{aligned}$$
(A.34)
$$\begin{aligned} \mathbf{B}= & {} B_0 + B_1z = \left( \begin{array}{ll} z/2 &{}\quad -u \dfrac{pq + \theta _0 - q(pq + (\theta _0 - \theta _1 + \theta _{\infty }) /2)}{t} \\ \frac{1}{t u} (p q - p - \frac{\theta _0 + \theta _1 + \theta _{\infty }}{2q}) &{}\quad -z/2 \end{array} \right) .\nonumber \\ \end{aligned}$$
(A.35)

The compatibility condition (2.8) gives

$$\begin{aligned} \left\{ \begin{array}{l} \dot{u} = \dfrac{u}{2tq}\left[ 2pq(1-q)^2 + \theta _0 + \theta _1 + \theta _{\infty } - 2q \theta _0 + q^2(\theta _0 - \theta _1 + \theta _{\infty }) \right] , \\ \dot{q} = \dfrac{1}{2t} \left[ -4pq(1-q)^2 -3\theta _0 - \theta _1 - \theta _{\infty } +2q(t + 2\theta _0 \right. \\ \quad \;\;\left. + \theta _{\infty }) -q^2(\theta _0 - \theta _1 + \theta _{\infty }) \right] , \\ \dot{p} = \dfrac{1}{2t q^2} \left[ 2q^2p^2(1-4q+3q^2) + 2q^2 p (q(\theta _0 - \theta _1 \right. \\ \quad \;\; \left. + \theta _{\infty }) - 2\theta _0 - \theta _{\infty } - t) -\theta _0(\theta _0 + \theta _1 + \theta _{\infty }) \right] , \end{array} \right. \end{aligned}$$
(A.36)

from which one can extract the PV equation

$$\begin{aligned} \begin{aligned} \ddot{q} =&\, \dfrac{\dot{q}^2}{2q} + \dfrac{\dot{q}^2}{q-1} - \dfrac{\dot{q}}{t} + q\dfrac{1 - \theta _0 - \theta _{1}}{t} - q \dfrac{q+1}{2(q-1)} \\&+ \dfrac{(q-1)^2}{t^2}\left( q\dfrac{(\theta _0 - \theta _1 + \theta _{\infty })^2}{8} - \dfrac{(\theta _0 - \theta _1 - \theta _{\infty })^2}{8q} \right) . \end{aligned} \end{aligned}$$
(A.37)

The trace

$$\begin{aligned} \dfrac{1}{2} {\text {Tr}}{} \mathbf{A}^2 = \dfrac{t^2}{4} + \dfrac{\theta _0^2}{4z^2} + \dfrac{\theta _1^2}{4(z-1)^2} + \dfrac{- U(t) -t \theta _{\infty }/4}{z} + \dfrac{U(t) - t \theta _{\infty }/4}{z-1} \end{aligned}$$
(A.38)

contains the function

$$\begin{aligned} \begin{aligned} U(t) =&\, -pqt -t\dfrac{\theta _0 + \theta _{\infty }}{2} + t \dfrac{\theta _{\infty }}{4} - \dfrac{\theta _0^2 + \theta _1^2 - \theta _{\infty }^2}{4} \\&- \left( pq - \dfrac{1}{q}\left( pq + \frac{\theta _0 + \theta _1 + \theta _{\infty }}{2}\right) \right) \\&\times \left( pq + \theta _0 - q\left( pq + \frac{\theta _0 - \theta _1 + \theta _{\infty }}{2}\right) \right) . \end{aligned} \end{aligned}$$
(A.39)

The \(\sigma \)-PV equation is satisfied by the combination

$$\begin{aligned} \sigma _{\mathrm{V}}(t) = U(t) + t \dfrac{\theta _{\infty }}{4} + \dfrac{\theta _0^2 + \theta _1^2 - \theta _{\infty }^2}{4} + \dfrac{t}{2} (\theta _0 + \theta _{\infty }) + \dfrac{(\theta _0 + \theta _{\infty })^2 - \theta _1^2}{4}. \end{aligned}$$
(A.40)

It is explicitly written as

$$\begin{aligned} (t \ddot{\sigma }_{\mathrm{V}})^2 =&\, \left( \sigma _{\mathrm{V}} - t \dot{\sigma }_{\mathrm{V}} + 2 \dot{\sigma }_{\mathrm{V}}^2 - (2\theta _0 + \theta _{\infty })\dot{\sigma }_{\mathrm{V}} \right) ^2 \nonumber \\&- 4 \dot{\sigma }_{\mathrm{V}} \left( \dot{\sigma }_{\mathrm{V}} - \theta _0 \right) \left( \dot{\sigma }_{\mathrm{V}} - \frac{\theta _0 - \theta _1 + \theta _{\infty }}{2} \right) \left( \dot{\sigma }_{\mathrm{V}} - \frac{\theta _0 + \theta _1 + \theta _{\infty }}{2} \right) . \end{aligned}$$
(A.41)

From this, one can easily extract the \(\tau \)-PV equation. We prefer to redefine

$$\begin{aligned} \zeta _\mathrm{V}(t) = \sigma _\mathrm{V}(t) + \dfrac{(2\theta _0 + \theta _{\infty })^2}{8} + \dfrac{2\theta _0 + \theta _{\infty }}{4}t, \end{aligned}$$
(A.42)

and change the notation as \(\theta _0 \rightarrow 2 \theta _t\), \(\theta _1 \rightarrow 2\theta _0\), \(\theta _{\infty } \rightarrow 2\theta _*\), so that (A.41) becomes

$$\begin{aligned} \left( t \ddot{\zeta }_\mathrm{V} \right) ^2 = \left( \zeta _\mathrm{V} - t \dot{\zeta }_\mathrm{V} + 2 \dot{\zeta }_\mathrm{V}^2 \right) ^2 - \dfrac{1}{4}\left( \left( 2 \dot{\zeta }_\mathrm{V} - \theta _* \right) ^2 - 4 \theta _0^2 \right) \left( \left( 2 \dot{\zeta }_\mathrm{V} + \theta _* \right) ^2 - 4 \theta _t^2 \right) . \end{aligned}$$
(A.43)

The function \(\zeta _\mathrm{V}(t)\) is related to the tau function via

$$\begin{aligned} \zeta _\mathrm{V}(t) = t\frac{\mathrm{d}}{\mathrm{d}t} \ln \left( e^{-\frac{\theta _* t}{2}} t^{-\theta _0^2 - \theta _t^2 - \frac{\theta _*^2}{2}} \tau _\mathrm{V}(t) \right) . \end{aligned}$$
(A.44)

This tau function admits the following long-distance expansions along the canonical rays \(\arg t=0,\pi ,\pm \frac{\pi }{2}\):

\(\varvec{\tau }\) -PV expansion 1

On the rays arg\(\,t = 0, \pi \) (i.e., \(s \in \mathbb {R}\)) we can write

$$\begin{aligned} \begin{aligned}&\tau _\mathrm{V}(t) = s^{-\frac{1}{3} + 2\theta _0^2 + 2 \theta _t^2 + \theta _*^2}\sum _{n \in \mathbb {Z}} e^{i n \rho } \mathcal {G}(\nu + n, s), \quad t = 2 s, \\&\mathcal {G}(\nu , s) = C(\nu ,s) \left[ 1 + \sum _{k=1}^{\infty } \dfrac{D_k(\nu )}{s^k} \right] , \\&C(\nu ,s) = (2\pi )^{-\frac{\nu }{2}} e^{\frac{s^2}{8} + i \nu s - \frac{i \pi \nu ^2}{4} + \theta _* s} s^{- \frac{\nu ^2}{2} + \frac{1}{12}} 2^{-\nu ^2} G\left( 1+\nu \right) , \end{aligned} \end{aligned}$$
(A.45)

where the first few coefficients are given by

$$\begin{aligned} \begin{aligned} D_1(\nu ) =&- \dfrac{i \nu ^3}{4} + \dfrac{i \nu \left( 32 \theta _0^2 + 32 \theta _t^2 + 16 \theta _*^2 - 7 \right) }{8} - 4 \theta _* \left( \theta _0^2 - \theta _t^2 \right) , \\ D_2(\nu ) =&- \dfrac{\nu ^6}{32} + \dfrac{\left( 8\theta _0^2 + 8 \theta _t^2 + 4 \theta _*^2 - 3\right) \nu ^4}{8} + i \theta _* \left( \theta _0^2 - \theta _t^2 \right) \nu ^3 \\&- \left( 2 \left( 2\theta _0^2 + 2 \theta _t^2 + \theta _*^2 \right) ^2 - \dfrac{19}{4} \left( 2\theta _0^2 + 2 \theta _t^2 + \theta _*^2 \right) + \dfrac{229}{128} \right) \nu ^2 \\&- \dfrac{i \theta _*(\theta _0^2 - \theta _t^2)(32\theta _0^2 + 32 \theta _t^2 + 16 \theta _*^2 - 39)\nu }{2}\\&+ \left( 4\theta _*^2 - 1 \right) \left( 2 \left( \theta _0^2 - \theta _t^2 \right) ^2 - \theta _0^2 - \theta _t^2 + \dfrac{1}{8} \right) . \end{aligned} \end{aligned}$$
(A.46)

It can be deduced from the number of Barnes functions that there is a single light particle in this sector. From these expressions, we get

$$\begin{aligned} \ln \left[ \mathcal {G}\left( \frac{\nu }{\epsilon }, \frac{\theta _*}{\epsilon }, \frac{\theta _0}{\epsilon }, \frac{\theta _t}{\epsilon }, \frac{s}{\epsilon } \right) \right] = \sum _{g \geqslant 0} \epsilon ^{2g-2} \mathcal {F}_g(\nu , \theta _*, \theta _0, \theta _t, s), \end{aligned}$$
(A.47)

where

$$\begin{aligned} \mathcal {F}_0(\nu , \theta _*, \theta _0, \theta _t, s) =&\, \dfrac{s^2}{8} + i\nu s + \theta _* s + \dfrac{\nu ^2}{2} \ln \dfrac{\nu }{4 i s} - \dfrac{3\nu ^2}{4} \nonumber \\&- \dfrac{i \nu ^3}{4 s} + \dfrac{2i \nu (2 \theta _0^2 + 2 \theta _t^2 + \theta _*^2)}{s} - \dfrac{4\theta _* (\theta _0^2 - \theta _t^2)}{s}\nonumber \\&- \dfrac{5 \nu ^4}{32 s^2} + \dfrac{3(2\theta _0^2 + 2\theta _t^2 + \theta _*^2) \nu ^2}{s^2} + \dfrac{16 i \theta _* (\theta _0^2 - \theta _t^2)\nu }{s^2} \nonumber \\&- \dfrac{2(\theta _0^2 - \theta _t^2)^2 + 4(\theta _0^2 + \theta _t^2)\theta _*^2}{s^2} + O(s^{-3}), \nonumber \\ \mathcal {F}_1(\nu , \theta _*, \theta _0, \theta _t, s)&= \zeta '(-1) - \dfrac{1}{12}\ln \dfrac{\nu }{s} - \dfrac{7 i \nu }{8 s} - \dfrac{45 \nu ^2}{32 s^2}\nonumber \\&+ \dfrac{2\theta _0^2 + 2\theta _t^2 + \theta _*^2}{2s^2} + O(s^{-3}), \nonumber \\ \mathcal {F}_2(\nu , \theta _*, \theta _0, \theta _t, s)&= - \dfrac{1}{240 \nu ^2} - \dfrac{1}{8s^2} + O(s^{-3}), \nonumber \\ \mathcal {F}_g(\nu , \theta _*, \theta _0, \theta _t, s)&= \ldots . \end{aligned}$$
(A.48)

\(\varvec{\tau }\) -PV expansion 2

On the complementary rays arg\(\,t = \pm \frac{\pi }{2}\) (i.e., \(s \in i \mathbb {R}\)) we can write

$$\begin{aligned} \tau _\mathrm{V}(t) =&\, s^{-\frac{1}{3} + 2\theta _0^2 + 2 \theta _t^2 + \theta _*^2}\sum _{n \in \mathbb {Z}} e^{i n \rho } \mathcal {G}(\nu + n, s), \quad t = s, \nonumber \\ \mathcal {G}(\nu , s) =&\, C(\nu ,s) \left[ 1 + \sum _{k=1}^{\infty } \dfrac{D_k(\nu )}{s^k} \right] , \nonumber \\ C(\nu ,s) =&\, (2\pi )^{-2\nu } e^{\nu s + \frac{\theta _* s}{2}} s^{- 2 \nu ^2 + \frac{1}{3} - \theta _0^2 - \theta _t^2 - \frac{\theta _*^2}{2}} 2^{-2 \nu ^2} G\left( 1+\nu + \theta _0 - \dfrac{\theta _*}{2} \right) \nonumber \\&\times G\left( 1+\nu + \theta _t + \dfrac{\theta _*}{2} \right) G\left( 1+\nu - \theta _0 - \dfrac{\theta _*}{2} \right) G\left( 1+\nu - \theta _t + \dfrac{\theta _*}{2} \right) , \end{aligned}$$
(A.49)

where the first few coefficients are given by

$$\begin{aligned} D_1(\nu ) =&\, 4\nu ^3 - \left( 2 \theta _0^2 + 2 \theta _t^2 + \theta _*^2 \right) \nu + \theta _* \left( \theta _t^2 - \theta _0^2 \right) , \nonumber \\ D_2(\nu ) =&\,8 \nu ^6 - 2 \left( 4\theta _0^2 + 4 \theta _t^2 + 2 \theta _*^2 - 5 \right) \nu ^4 + 4 \theta _* \left( \theta _t^2 - \theta _0^2 \right) \nu ^3 \nonumber \\&+ \dfrac{1}{2} \left( 2\theta _0^2 + 2 \theta _t^2 + \theta _*^2 \right) \left( 2\theta _0^2 + 2 \theta _t^2 + \theta _*^2 - 6 \right) \nu ^2\nonumber \\&- \theta _*(\theta _t^2 - \theta _0^2)(2\theta _0^2 + 2 \theta _t^2 + \theta _*^2 - 4)\nu \nonumber \\&+ \dfrac{4\theta _*^2 \left( \theta _t^2 - \theta _0^2 \right) ^2 + \left( \theta _*^2 - 4 \theta _0^2 \right) \left( \theta _*^2 - 4 \theta _t^2 \right) }{8}. \end{aligned}$$
(A.50)

From the number of Barnes G-functions, it follows that there is an SU(4) quartet of light particles in this sector. This expansion is equivalent to the one proposed in [58, Conjecture 4.1]. The function \(\mathcal G(\nu ,s)\) is interpreted there as \(c=1\) Virasoro conformal block that involves irregular vertex operators intertwining two Whittaker modules of rank 1. From this, we recover

$$\begin{aligned} \ln \left[ \mathcal {G}\left( \frac{\nu }{\epsilon }, \frac{\theta _*}{\epsilon }, \frac{\theta _0}{\epsilon }, \frac{\theta _t}{\epsilon }, \frac{s}{\epsilon } \right) \right] = \sum _{g \geqslant 0} \epsilon ^{2g-2} \mathcal {F}_g(\nu , \theta _*, \theta _0, \theta _t, s), \end{aligned}$$
(A.51)

where

$$\begin{aligned} \begin{aligned} \mathcal {F}_0(\nu , \theta _*, \theta _0, \theta _t, s)=\,&\nu s + \frac{\theta _* s}{2} - 2\nu ^2 \ln 2 + \dfrac{(\nu + \theta _0 - \theta _*/2)^2}{2} \ln \dfrac{\nu + \theta _0 - \theta _*/2}{s} \\&+ \dfrac{(\nu - \theta _0 - \theta _*/2)^2}{2} \ln \dfrac{\nu - \theta _0 - \theta _*/2}{s}\\&+ \dfrac{(\nu + \theta _t + \theta _*/2)^2}{2} \ln \dfrac{\nu + \theta _t + \theta _*/2}{s} \\&+ \dfrac{(\nu - \theta _t + \theta _*/2)^2}{2} \ln \dfrac{\nu - \theta _t + \theta _*/2}{s}\\&- \dfrac{3(4\nu ^2 + 2\theta _0^2 + 2\theta _t^2 + \theta _*^2)}{4} \\&+ \dfrac{4\nu ^3}{s} - \dfrac{\nu (2 \theta _0^2 + 2 \theta _t^2 + \theta _*^2)}{s} - \dfrac{\theta _* (\theta _0^2 - \theta _t^2)}{s} \\&+ \dfrac{10 \nu ^4}{s^2} - \dfrac{3(2\theta _0^2 + 2\theta _t^2 + \theta _*^2) \nu ^2}{s^2} - \dfrac{4 \theta _* (\theta _0^2 - \theta _t^2)\nu }{s^2}\\&+ \dfrac{(\theta _*^2 - 4 \theta _0^2)(\theta _*^2 - 4 \theta _t^2)}{8 s^2} + O(s^{-3}), \\ \mathcal {F}_1(\nu , \theta _*, \theta _0, \theta _t, s) =&\, 4\zeta '(-1) - \dfrac{1}{12}\ln \dfrac{\nu + \theta _0 - \theta _*/2}{s} - \dfrac{1}{12}\ln \dfrac{\nu - \theta _0 - \theta _*/2}{s} \\&- \dfrac{1}{12}\ln \dfrac{\nu + \theta _t + \theta _*/2}{s} - \dfrac{1}{12}\ln \dfrac{\nu - \theta _t + \theta _*/2}{s} + O(s^{-3}), \\ \mathcal {F}_2(\nu , \theta _*, \theta _0, \theta _t, s) =&\, - \dfrac{1}{240 (\nu + \theta _0 - \theta _*/2)^2} - \dfrac{1}{240 (\nu - \theta _0 - \theta _*/2)^2} \\&- \dfrac{1}{240 (\nu + \theta _t + \theta _*/2)^2} - \dfrac{1}{240 (\nu - \theta _t + \theta _*/2)^2} + O(s^{-3}), \\ \mathcal {F}_g(\nu , \theta _*, \theta _0, \theta _t, s) =&\, \ldots . \end{aligned} \end{aligned}$$
(A.52)

Appendix B: Strong coupling expansions for SQCD

In this appendix, we compute the lowest genera prepotentials \(\mathcal {F}_g\) for 4d \(\mathcal {N} = 2\) SQCD which were not considered in Sect. 4.

1.1 \(\mathcal {N}=2\) SU(2) SQCD—\(N_f = 0\)

The Seiberg–Witten curve for \(\mathcal {N} = 2\) SU(2) with \(N_f = 0\) reads [4]

$$\begin{aligned} y^2 = \dfrac{\varLambda ^2}{z^3} + \dfrac{2u}{z^2} + \dfrac{\varLambda ^2}{z}. \end{aligned}$$
(B.1)

In this representation, it coincides with (A.5). For computations, it is actually more convenient to use the equivalent representation [64]

$$\begin{aligned} y^2 = \left( x^2 - u \right) ^2 - \varLambda ^4. \end{aligned}$$
(B.2)

The zeroes of the discriminant

$$\begin{aligned} \varDelta = 256 \varLambda ^8 (u^2 - \varLambda ^4) \end{aligned}$$
(B.3)

tell us the position of the singularities (apart the one at \(u = \infty \)) of the Coulomb branch moduli space; in this case, these are located at

$$\begin{aligned} u_1 = \varLambda ^2 ,\quad u_2 = -\varLambda ^2 . \end{aligned}$$
(B.4)

We will therefore have two expansions for the genus zero prepotential \(\mathcal {F}_0\), obtained from (4.7) evaluated around \(u_1\) and \(u_2\), respectively; these will be related by the \(\mathbb {Z}_2\) symmetry \(\varLambda \rightarrow i \varLambda \) that interchanges \(u_1\) with \(u_2\).

\(\varvec{N}_{\varvec{f}} \,\mathbf = \, \mathbf 0 \) expansion 1

The genus zero prepotential around \(u_1\) (with integration constants) can be easily computed, and it is given by

$$\begin{aligned} \begin{aligned} 2\pi i \mathcal {F}_0&= \dfrac{a_D^2}{4} \ln \left( 2^8 \dfrac{(\varLambda e^{-i\pi /2})^2}{a_D^2} \right) + \dfrac{3}{4} a_D^2 + b_1 a_D \varLambda + b_2 \varLambda ^2 \\&\quad + \dfrac{a_D^3}{16 (\varLambda e^{-i\pi /2})} - \dfrac{5a_D^4}{512(\varLambda e^{-i\pi /2})^2} + \dfrac{11 a_D^5}{4096 (\varLambda e^{-i\pi /2})^3} + \cdots \end{aligned} \end{aligned}$$
(B.5)

The genus one contribution is

$$\begin{aligned} \begin{aligned} \mathcal {F}_1&= - \dfrac{1}{12} \ln \dfrac{ a_D}{4\varLambda e^{-i\pi /2}} + \dfrac{a_D}{2^5 (\varLambda e^{-i\pi /2})} - \dfrac{3 a_D^2}{2^9 (\varLambda e^{-i\pi /2})^2} + O(\varLambda ^{-3}). \end{aligned} \end{aligned}$$
(B.6)

These agree with the first expansion of Sect. A.1 for \(\nu = i a_D\) and \(s = 4i \varLambda \). Notice also that the Painlevé asymptotics determines the constants \(b_1\) and \(b_2\) appearing in the gauge theory computation of \(\mathcal {F}_0\).

\(\varvec{N}_{\varvec{f}} \,\mathbf = \, \mathbf 0 \) expansion 2

Similarly, the genus zero prepotential around \(u_2\) (again with integration constants) reads

$$\begin{aligned} \begin{aligned} 2\pi i \mathcal {F}_0&= \dfrac{a_D^2}{4} \ln \left( 2^8 \dfrac{(\varLambda e^{i \pi /2})^2}{a_D^2} \right) + \dfrac{3}{4} a_D^2 + + b_1' a_D \varLambda + b_2' \varLambda ^2 \\&\quad + \dfrac{a_D^3}{16 (\varLambda e^{i \pi /2})} - \dfrac{5a_D^4}{512(\varLambda e^{i \pi /2})^2} + \dfrac{11 a_D^5}{4096 (\varLambda e^{i \pi /2})^3} + \cdots \end{aligned} \end{aligned}$$
(B.7)

The genus one

$$\begin{aligned} \begin{aligned} \mathcal {F}_1 = - \dfrac{1}{12} \ln \dfrac{ a_D}{4\varLambda e^{i\pi /2}} + \dfrac{a_D}{2^5 (\varLambda e^{i\pi /2})} - \dfrac{3 a_D^2}{2^9 (\varLambda e^{i\pi /2})^2} + O(\varLambda ^{-3}). \end{aligned} \end{aligned}$$
(B.8)

These are the same expressions as above with \(\frac{a_D}{\varLambda } \rightarrow - \frac{a_D}{\varLambda }\).

1.2 \(\mathcal {N}=2\) SU(2) SQCD—\(N_f = 1\)

The Seiberg–Witten curve for \(\mathcal {N} = 2\) SU(2) with \(N_f = 1\) is given by [4]

$$\begin{aligned} y^2 = \dfrac{\varLambda ^2}{z^3} + \dfrac{3u}{z^2} + \dfrac{2\varLambda m}{z} + \varLambda ^2. \end{aligned}$$
(B.9)

In this representation, it coincides with (A.16). For computations, we will use the equivalent representation [64]

$$\begin{aligned} y^2 = \left( x^2 - u \right) ^2 - \varLambda ^3 (x + m). \end{aligned}$$
(B.10)

The zeroes of the discriminant

$$\begin{aligned} \varDelta = -\varLambda ^6 (256u^3 - 256 m^2 u^2 - 288 m u \varLambda ^3 + 256 m^3 \varLambda ^3 + 27 \varLambda ^3) \end{aligned}$$
(B.11)

are located at (perturbatively in m small)

$$\begin{aligned} u_1&= -\dfrac{3}{4}\dfrac{\varLambda ^2}{2^{2/3}} - \dfrac{m\varLambda }{2^{1/3}} + \dfrac{m^2}{3} + O(m^3), \nonumber \\ u_2&= -\dfrac{3}{4}\dfrac{(e^{2\pi i/3}\varLambda )^2}{2^{2/3}} - \dfrac{m(e^{2\pi i/3}\varLambda )}{2^{1/3}} + \dfrac{m^2}{3} + O(m^3), \nonumber \\ u_3&= -\dfrac{3}{4}\dfrac{(e^{4\pi i/3}\varLambda )^2}{2^{2/3}} - \dfrac{m(e^{4\pi i/3}\varLambda )}{2^{1/3}} + \dfrac{m^2}{3} + O(m^3). \end{aligned}$$
(B.12)

We therefore expect three expansions related by \(\mathbb {Z}_3\) symmetry.

\(\varvec{N}_{\varvec{f}} \,\mathbf = \, \mathbf 1 \) expansion 1

The genus zero prepotential around \(u_1\) reads

$$\begin{aligned} \begin{aligned} 2\pi i \mathcal {F}_0 =&\, \dfrac{a_D^2}{4} \ln \left( 2^{7/3}3^5 \dfrac{(\varLambda e^{-i \pi /2})^2}{a_D^2} \right) + \dfrac{3}{4} a_D^2 + b_1(\varLambda , m) a_D + b_2(\varLambda , m) \\&- \dfrac{5 a_D^3}{18 \sqrt{3}\, 2^{1/6} (\varLambda e^{-i \pi /2})} + \dfrac{2^{4/3} (im) a_D^2}{3 (\varLambda e^{-i \pi /2})} \\&+ \dfrac{515a_D^4}{2^{1/3} 1944(\varLambda e^{-i \pi /2})^2} - \dfrac{2^{1/6} 38 (im) a_D^3}{27 \sqrt{3} (\varLambda e^{-i \pi /2})^2} + \dfrac{2^{2/3} 7 (im)^2 a_D^2}{9 (\varLambda e^{-i \pi /2})^2} \\&- \dfrac{10759 a_D^5}{17496 \sqrt{6} (\varLambda e^{-i \pi /2})^3} + \dfrac{805 (im) a_D^4}{729 (\varLambda e^{-i \pi /2})^3} - \dfrac{55\sqrt{2} (im)^2 a_D^3}{27 \sqrt{3} (\varLambda e^{-i \pi /2})^3} \\&+ \dfrac{80 (im)^3 a_D^2}{81 (\varLambda e^{-i \pi /2})^3} + \cdots . \end{aligned} \end{aligned}$$
(B.13)

The genus one contribution is

$$\begin{aligned} \begin{aligned} \mathcal {F}_1&= - \dfrac{1}{12} \ln \dfrac{2 a_D}{(2^{1/6} 3 \varLambda e^{-i\pi /2})} - \dfrac{13 a_D}{2^{1/6}36 \sqrt{3} (\varLambda e^{-i\pi /2})} + \dfrac{2^{1/3}(i m)}{9(\varLambda e^{-i\pi /2})} \\&\quad + \dfrac{533 a_D^2}{2^{1/3}1944 (\varLambda e^{-i\pi /2})^2} - \dfrac{2^{1/6}11(i m)a_D}{27 \sqrt{3}(\varLambda e^{-i\pi /2})^2}\\&\quad + \dfrac{(i m)^2}{2^{1/3}27(\varLambda e^{-i\pi /2})^2} + O(\varLambda ^{-3}). \end{aligned} \end{aligned}$$
(B.14)

\(\varvec{N}_{\varvec{f}} \,\mathbf = \, \mathbf 1 \) expansion 2

The genus zero prepotential around \(u_2\) reads

$$\begin{aligned} \begin{aligned} 2\pi i \mathcal {F}_0 =&\, \dfrac{a_D^2}{4} \ln \left( 2^{7/3}3^5 \dfrac{(\varLambda e^{2 i \pi /3})^2}{a_D^2} \right) + \dfrac{3}{4} a_D^2 + b_1'(\varLambda , m) a_D + b_2'(\varLambda , m) \\&- \dfrac{5 a_D^3}{18 \sqrt{3}\, 2^{1/6} (\varLambda e^{2 i \pi /3})} + \dfrac{2^{4/3} (-m) a_D^2}{3 (\varLambda e^{2i \pi /3})} \\&+ \dfrac{515a_D^4}{2^{1/3} 1944(\varLambda e^{2i \pi /3})^2} - \dfrac{2^{1/6} 38 (-m) a_D^3}{27 \sqrt{3} (\varLambda e^{2i \pi /3})^2} + \dfrac{2^{2/3} 7 (-m)^2 a_D^2}{9 (\varLambda e^{2i \pi /3})^2} \\&- \dfrac{10759 a_D^5}{17496 \sqrt{6} (\varLambda e^{2i \pi /3})^3} + \dfrac{805 (-m) a_D^4}{729 (\varLambda e^{2i \pi /3})^3} - \dfrac{55\sqrt{2} (-m)^2 a_D^3}{27 \sqrt{3} (\varLambda e^{2i \pi /3})^3}\\&+ \dfrac{80 (-m)^3 a_D^2}{81 (\varLambda e^{2i \pi /3})^3} + \cdots , \end{aligned} \end{aligned}$$
(B.15)

while the genus one is

$$\begin{aligned} \mathcal {F}_1&= - \dfrac{1}{12} \ln \dfrac{2 a_D}{(2^{1/6} 3 \varLambda e^{2i\pi /3})} - \dfrac{13 a_D}{2^{1/6}36 \sqrt{3} (\varLambda e^{2 i \pi /3})} + \dfrac{2^{1/3}(- m)}{9(\varLambda e^{2 i \pi /3})} \nonumber \\&\quad + \dfrac{533 a_D^2}{2^{1/3}1944 (\varLambda e^{2 i \pi /3})^2} - \dfrac{2^{1/6}11(-m)a_D}{27 \sqrt{3}(\varLambda e^{2 i \pi /3})^2}\nonumber \\&\quad + \dfrac{(- m)^2}{2^{1/3}27(\varLambda e^{2 i \pi /3})^2} + O(\varLambda ^{-3}). \end{aligned}$$
(B.16)

\(\varvec{N}_{\varvec{f}} \,\mathbf = \, \mathbf 1 \) expansion 3

The genus zero prepotential around \(u_3\) reads

$$\begin{aligned} 2\pi i \mathcal {F}_0 =\,&\dfrac{a_D^2}{4} \ln \left( 2^{7/3}3^5 \dfrac{(\varLambda e^{i \pi /3})^2}{a_D^2} \right) + \dfrac{3}{4} a_D^2 + b_1''(\varLambda , m) a_D + b_2''(\varLambda , m) \nonumber \\&- \dfrac{5 a_D^3}{18 \sqrt{3}\, 2^{1/6} (\varLambda e^{i \pi /3})} + \dfrac{2^{4/3} m a_D^2}{3 (\varLambda e^{i \pi /3})} \nonumber \\&+ \dfrac{515a_D^4}{2^{1/3} 1944(\varLambda e^{i \pi /3})^2} - \dfrac{2^{1/6} 38 m a_D^3}{27 \sqrt{3} (\varLambda e^{i \pi /3})^2} + \dfrac{2^{2/3} 7 m^2 a_D^2}{9 (\varLambda e^{i \pi /3})^2} \nonumber \\&- \dfrac{10759 a_D^5}{17496 \sqrt{6} (\varLambda e^{i \pi /3})^3} + \dfrac{805 m a_D^4}{729 (\varLambda e^{i \pi /3})^3} - \dfrac{55\sqrt{2} m^2 a_D^3}{27 \sqrt{3} (\varLambda e^{i \pi /3})^3}\nonumber \\&+ \dfrac{80 m^3 a_D^2}{81 (\varLambda e^{i \pi /3})^3} + \cdots , \end{aligned}$$
(B.17)

while the genus one is

$$\begin{aligned} \begin{aligned} \mathcal {F}_1&= - \dfrac{1}{12} \ln \dfrac{2 a_D}{(2^{1/6} 3 \varLambda e^{i\pi /3})} - \dfrac{13 a_D}{2^{1/6}36 \sqrt{3} (\varLambda e^{i \pi /3})} + \dfrac{2^{1/3}m}{9(\varLambda e^{i \pi /3})} \\&\quad + \dfrac{533 a_D^2}{2^{1/3}1944 (\varLambda e^{i \pi /3})^2} - \dfrac{2^{1/6}11 m a_D}{27 \sqrt{3}(\varLambda e^{i \pi /3})^2} + \dfrac{m^2}{2^{1/3}27(\varLambda e^{i \pi /3})^2} + O(\varLambda ^{-3}). \end{aligned} \end{aligned}$$
(B.18)

These three expansions agree with the results of Sect. A.2 under identification \(\nu = \mp i \sqrt{3} a_D\), \(s = \pm i 2^{-5/6} 3 \varLambda e^{i \theta _{\varLambda }}\) and \(\theta _* = \mp i 2^{-1/2} m e^{i \theta _m}\), with \(\theta _{\varLambda } = - \frac{\pi }{2}\), \(\theta _m = \frac{\pi }{2}\) for the first expansion, \(\theta _{\varLambda } = \frac{2\pi }{3}\), \(\theta _m = \pi \) for the second expansion and \(\theta _{\varLambda } = \frac{\pi }{3}\), \(\theta _m = 0\) for the third expansion.

1.3 \(\mathcal {N}=2\) SU(2) SQCD—\(N_f = 2\)

The Seiberg–Witten curve for \(\mathcal {N} = 2\) SU(2) with \(N_f = 2\) is given by [4]

$$\begin{aligned} y^2&= \dfrac{\varLambda ^2}{z^4} + \dfrac{2\varLambda m_1}{z^3} + \dfrac{4u}{z^2} + \dfrac{2\varLambda m_2}{z} + \varLambda ^2 \quad (\text {first realization}) \nonumber \\ y^2&= \dfrac{m^2_+}{z^2} + \dfrac{m^2_-}{(z-1)^2} + \dfrac{\varLambda ^2 + u}{2z} + \dfrac{\varLambda ^2 - u}{2(z-1)} \quad (\text {second realization}) \end{aligned}$$
(B.19)

In the first realization, it coincides with (A.27); the second realization can be shown to coincide with the spectral curve for PV\(_\mathrm{deg}\) by making use of the explicit expression for its Lax pair given for example in [77]. For computations, we will use the equivalent representation [64]

$$\begin{aligned} y^2 = \left( x^2 - u + \dfrac{\varLambda ^2}{8} \right) ^2 - \varLambda ^2 (x + m_1) (x + m_2). \end{aligned}$$
(B.20)

The zeroes of the discriminant

$$\begin{aligned} \varDelta = 16 B^4 D + 256 D^3 - 128 B^2 D^2 - 4 B^3 C^2 - 27 C^4 + 144 B C^2 D \end{aligned}$$
(B.21)

with

$$\begin{aligned} \begin{aligned} B&= -2u - \dfrac{3\varLambda ^2}{4},\\ C&= -\varLambda ^2(m_1 + m_2), \\ D&= u^2 - \dfrac{u \varLambda ^2}{4} + \dfrac{\varLambda ^4}{64} - \varLambda ^2 m_1 m_2, \end{aligned} \end{aligned}$$
(B.22)

are located at (perturbatively in \(m_1\), \(m_2\) small)

$$\begin{aligned} \begin{aligned} u_1&= - \frac{\varLambda ^2}{8} - \dfrac{\varLambda (m_1 + m_2)}{2} + \dfrac{(m_1 - m_2)^2}{4} + O(\varLambda ^{-1}), \\ u_2&= - \frac{\varLambda ^2}{8} + \dfrac{\varLambda (m_1 + m_2)}{2} + \dfrac{(m_1 - m_2)^2}{4} + O(\varLambda ^{-1}),\\ u_3&= \frac{\varLambda ^2}{8} + \dfrac{i\varLambda (m_1 - m_2)}{2} + \dfrac{(m_1 + m_2)^2}{4} + O(\varLambda ^{-1}), \\ u_4&= \frac{\varLambda ^2}{8} - \dfrac{i\varLambda (m_1 - m_2)}{2} + \dfrac{(m_1 + m_2)^2}{4} + O(\varLambda ^{-1}). \end{aligned} \end{aligned}$$
(B.23)

We therefore expect four expansions for generic values of the masses. Unfortunately, computations with all masses turned on are quite cumbersome; here, we present the results for \(\mathcal {F}_0\) and \(\mathcal {F}_1\) at zero masses (in which \(u_1 = u_2\) and \(u_3 = u_4\)), and later we will give the expression for \(\mathcal {F}_1\) at generic masses.

\(\varvec{N}_{\varvec{f}} \,\mathbf = \, \mathbf 2 \) expansion 1, 2 (massless)

The genus zero prepotential around \(u_1 = u_2\) (with integration constants) can be easily computed, and it is given by

$$\begin{aligned} \begin{aligned} 2\pi i \mathcal {F}_0&= \dfrac{a_D^2}{2} \ln \left( - \dfrac{8 \varLambda ^2}{a_D^2} \right) + \dfrac{3}{2} a_D^2 + b_1 a_D \varLambda + b_2 \varLambda ^2 + \dfrac{i a_D^3}{\sqrt{2}\varLambda } + \dfrac{5a_D^4}{8\varLambda ^2} + \cdots \end{aligned} \end{aligned}$$
(B.24)

The genus one contribution is

$$\begin{aligned} \begin{aligned} \mathcal {F}_1&= - \dfrac{1}{6} \ln \dfrac{a_D}{\sqrt{2}\varLambda } - \dfrac{i a_D}{2 \sqrt{2} \varLambda } - \dfrac{7 a_D^2}{8 \varLambda ^2} + O(\varLambda ^{-3}). \end{aligned} \end{aligned}$$
(B.25)

These expressions coincide with the massless case of the \(\hbox {PIII}_1\) expansion of Sect. A.3 under identification \(\nu = i a_D\), \(s = i\sqrt{2} \varLambda \).

\(\varvec{N}_{\varvec{f}} \,\mathbf = \, \mathbf 2 \) expansion 3, 4 (massless)

The genus zero prepotential around \(u_3 = u_4\) (with integration constants) is given by the expansion

$$\begin{aligned} \begin{aligned} 2\pi i \mathcal {F}_0&= \dfrac{a_D^2}{2} \ln \left( -\dfrac{8 \varLambda ^2}{a_D^2} \right) + \dfrac{3}{2} a_D^2 + b_1' a_D \varLambda + b_2' \varLambda ^2 - \dfrac{i a_D^3}{\sqrt{2}\varLambda } + \dfrac{5a_D^4}{8\varLambda ^2} + \cdots \end{aligned} \end{aligned}$$
(B.26)

The genus one counterpart is

$$\begin{aligned} \begin{aligned} \mathcal {F}_1&= - \dfrac{1}{6} \ln \dfrac{-a_D}{\sqrt{2}\varLambda } + \dfrac{i a_D}{2 \sqrt{2} \varLambda } - \dfrac{7 a_D^2}{8 \varLambda ^2} + O(\varLambda ^{-3}). \end{aligned} \end{aligned}$$
(B.27)

These expansions match the massless case of the expansion of Sect. A.3 for \(\nu = -i a_D\), \(s = i\sqrt{2} \varLambda \).

\(\varvec{N}_{\varvec{f}} \,\mathbf = \, \mathbf 2 \) expansion 1 (massive)

Genus one prepotential around \(u_1\) (modulo constants in the logarithms):

$$\begin{aligned} \begin{aligned} \mathcal {F}_1&= - \dfrac{1}{12} \ln \left( \dfrac{\widetilde{a}_D - i \frac{m_1+m_2}{2\sqrt{2}}}{\sqrt{2}\varLambda } \right) - \dfrac{1}{12} \ln \left( \dfrac{\widetilde{a}_D + i \frac{m_1+m_2}{2\sqrt{2}}}{\sqrt{2}\varLambda } \right) - \dfrac{i \widetilde{a}_D}{2 \sqrt{2} \varLambda } \\&\quad - \dfrac{7 \widetilde{a}_D^2}{8\varLambda ^2} - \dfrac{3 (m_1 + m_2)^2}{64\varLambda ^2} + O(\varLambda ^{-3}), \end{aligned} \end{aligned}$$
(B.28)

with

$$\begin{aligned} \widetilde{a}_D = a_D - i \dfrac{m_1+m_2}{2\sqrt{2}}. \end{aligned}$$
(B.29)

This coincides with the massive case of the expansion of Sect. A.3 under identification \(\nu = i \widetilde{a}_D\), \(s = \sqrt{2} i \varLambda \) and \(\theta _* - \theta _{\star } = \frac{m_1 + m_2}{\sqrt{2}}\). The results for the other three expansions are very similar and can be obtained by a change of signs in the parameters.

1.4 \(\mathcal {N}=2\) SU(2) SQCD—\(N_f = 3\)

The Seiberg–Witten curve for \(\mathcal {N} = 2\) SU(2) with \(N_f = 3\) is given by [4]

$$\begin{aligned} y^2 = \dfrac{m^2_+}{z^2} + \dfrac{m^2_-}{(z-1)^2} + \dfrac{2\varLambda m + u}{2z} + \dfrac{2\varLambda m - u}{2(z-1)} + \varLambda ^2. \end{aligned}$$
(B.30)

In this representation, it coincides with (A.38). For computations, we will use the equivalent representation [64]

$$\begin{aligned} y^2 = \left( x^2 - u + \dfrac{\varLambda }{4}\left( x + \frac{m_1 + m_2 + m_3}{2}\right) \right) ^2 - \varLambda (x + m_1) (x + m_2) (x + m_3). \end{aligned}$$
(B.31)

Here we will only consider the massless case, in which the zeroes of the discriminant (4.5) are located at

$$\begin{aligned} \begin{aligned} u_1 = \dfrac{\varLambda ^2}{256} \quad u_2 = u_3 = u_4 = u_5 = 0. \end{aligned} \end{aligned}$$
(B.32)

We will therefore have two different expansions.

\(\varvec{N}_{\varvec{f}} =\mathbf 3 \) expansion 1 (massless)

The genus zero prepotential around \(u_1\) is given by

$$\begin{aligned} \begin{aligned} 2\pi i \mathcal {F}_0&= \dfrac{a_D^2}{4} \ln \left( - \dfrac{\varLambda ^2}{8 a_D^2} \right) + \dfrac{3 a_D^2}{4} + b_1 a_D \varLambda + b_2 \varLambda ^2 - \dfrac{i 2 \sqrt{2} a_D^3}{\varLambda } + \dfrac{20 a_D^4}{\varLambda ^2} + \cdots . \end{aligned} \end{aligned}$$
(B.33)

The genus one reads instead

$$\begin{aligned} \begin{aligned} \mathcal {F}_1&= - \dfrac{1}{12} \ln \left( - \dfrac{8 \sqrt{2} a_D}{\varLambda } \right) + \dfrac{i 7 \sqrt{2} a_D}{\varLambda } - \dfrac{180 a_D^2}{\varLambda ^2} + O(\varLambda ^{-3}). \end{aligned} \end{aligned}$$
(B.34)

This can be matched with the results of the massless case of the first expansion in Sect. A.4 via \(\nu = -i a_D\), \(s = \frac{i \varLambda }{8\sqrt{2}}\).

\(\varvec{N}_{\varvec{f}} \,\mathbf = \, \mathbf 3 \) expansion 2, 3, 4, 5 (massless)

The genus zero prepotential around \(u_2 = u_3 = u_4 = u_5\) is given by

$$\begin{aligned} \begin{aligned} 2\pi i \mathcal {F}_0&= a_D^2 \ln \left( - \dfrac{\varLambda ^2}{32 a_D^2} \right) + 3 a_D^2 + b_1' a_D \varLambda + b_2' \varLambda ^2 + \dfrac{i 16 \sqrt{2} a_D^3}{\varLambda } + \dfrac{320 a_D^4}{\varLambda ^2} + \cdots , \end{aligned} \end{aligned}$$
(B.35)

while the genus one reads

$$\begin{aligned} \begin{aligned} \mathcal {F}_1&= - \dfrac{1}{3} \ln \left( - \dfrac{4 \sqrt{2} i a_D}{\varLambda } \right) + O(\varLambda ^{-3}). \end{aligned} \end{aligned}$$
(B.36)

This can be matched with the results of the massless case of the second expansion in Sect. A.4 by identifying \(\nu = i a_D \), \(s = -\frac{ \varLambda }{4 \sqrt{2}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonelli, G., Lisovyy, O., Maruyoshi, K. et al. On Painlevé/gauge theory correspondence. Lett Math Phys 107, 2359–2413 (2017). https://doi.org/10.1007/s11005-017-0983-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-0983-6

Keywords

Mathematics Subject Classification

Navigation