Skip to main content
Log in

A spatial single loop kinematotropic mechanism used for biped/wheeled switchable robots

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel biped walking robot on the basis of a spatial eight-bar mechanism. The kinematotropic characteristic of the mechanism is investigated and the geometric constrains deriving the kinematotropy are specified. The mechanism possesses two motion branches with different degrees of freedom. A detailed kinematic analysis is presented for both motion branches. A biped/wheeled switchable robot is further designed. In the motion branch I, the mechanism is used as a biped walking mechanism. In the motion branch II, it is utilized as a wheeled robot and completes the switch process between two modes. At last, we demonstrate the gait motion of the robot in the biped mode and the switch process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

d :

Degree of freedom of the motion space

f i :

Mobility of the ith joints

F :

Degree of freedom of a mechanism

g :

Number of joints

h i :

The number of constraint screws of the ith limb

k :

The dimension of the wrench system excluding common constraints

l i :

Direction cosine in the x-axis

L i :

Length of link i

m i :

Direction cosine in the y-axis

n :

Number of links including the base

n i :

Direction cosine in the z-axis

p :

The limb number of a parallel mechanism

p i :

Moment in the x-axis

q i :

Moment in the y-axis

r i :

Moment in the z-axis

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {r}_{i} \) :

Position vector

R i :

Axis of revolute joint i

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {r}_{i} \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {s}_{i} \) :

Moment of the screw axis

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {s}_{i} \) :

Unit vector

s :

Equation parameter

$ i :

Unit screw

\( \hat{S} \) :

Twist system of mechanism

$r :

Common constraint screw

$ i Bj :

Twist i in motion branch j

t :

Equation parameter

f2 f1 T :

Transfer matrix transferring from frame f1 to frame f2

v :

The number of redundant constraints

u,v :

Unit vector

θ i :

Angle of joint i

θ ij :

Sum of joint angle θ i and joint angle θ j , θ ij  = θ i  + θ j

θ ijk :

Sum of joint angle θ i , joint angle θ j and joint angle θ k , θ ijk  = θ i  + θ j  + θ k

ρ i :

Position variable

λ :

Number of independent common constraints

φ :

Twist matrix

σ i :

Position variable

References

  • ASIMO: technology [EB/OL]. Japan: Honda Motor Co., Ltd. http://world.honda.com/ASIMO/technology/ (2013). Accessed 3 November 2013

  • Baker, J.E., Wohlhart, K.: On the single screw reciprocal to the general line-symmetric six-screw linkage. Mech. Mach. Theory 29, 169–175 (1994)

    Article  Google Scholar 

  • Braun, D.J., Mitchell, J.E., Goldfarb, M.: Actuated dynamic walking in a seven-link biped robot. IEEE ASME Trans. Mechatron. 17, 147–156 (2012)

    Article  Google Scholar 

  • Chen, Y., Chai, W.H.: Bifurcation of a special line and plane symmetric Bricard linkage. Mech. Mach. Theory 46, 515–533 (2011)

    Article  Google Scholar 

  • Chen, Y., You, Z.: Two-fold symmetrical 6R foldable frame and its bifurcations. Int. J. Solids Struct. 25–26, 4504–4514 (2009)

    Article  Google Scholar 

  • Chen, Y., You, Z., Tamai, T.: Threefold-symmetric Bricard linkages for deployable structures. Int. J. Solids Struct. 42, 2287–2301 (2005)

    Article  Google Scholar 

  • Dai, J.S., Jones, J.R.: Mobility in metamorphic mechanisms of foldable/erectable kinds. J. Mech. Des. 121, 375–382 (1999)

    Article  Google Scholar 

  • Dai, J.S., Jones, J.R.: Matrix representation of topological changes in metamorphic mechanisms. J. Mech. Des. 127, 837–840 (2005)

    Article  Google Scholar 

  • Dargar, A., Khan, R.A., Hasan, A.: Application of link adjacency values to detect isomorphism among kinematic chains. Int. J. Mech. Mater. Des. 6, 157–162 (2010)

    Article  Google Scholar 

  • Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. the ASME. J. Appl. Mech. 22, 215–221 (1955)

    MathSciNet  Google Scholar 

  • Fanghella, P., Galletti, C., Giannotti, E.: Parallel robots that change their group of motion. In: Lenarcic, J., Roth, B. (eds.) Advances in Robot Kinematics, pp. 49–56. Springer, Netherlands (2006)

    Chapter  Google Scholar 

  • Galletti, C., Giannotti, E.: Multiloop Kinematotropic mechanisms. In: ASME Conference Proceedings, pp. 455–460 (2002)

  • Galletti, C., Fanghella, P.: Single-loop kinematotropic mechanisms. Mech. Mach. Theory 36, 743–761 (2001)

    Article  MathSciNet  Google Scholar 

  • Gan, D.M., Dai, J.S., Liao, Q.Z.: Constraint analysis on mobility change of a novel metamorphic parallel mechanism. Mech. Mach. Theory 45, 1864–1876 (2010)

    Article  Google Scholar 

  • Gan, D.M., Dai, J.S., Caldwell, D.G.: Constraint-based limb synthesis and mobility-change-aimed mechanism construction. J. Mech. Des. 133, 051001–051009 (2011)

    Article  Google Scholar 

  • Gogu, G.: Branching singularities in kinematotropic parallel mechanisms. Comput. Kinemat. XI, 341–348 (2009)

    Article  Google Scholar 

  • Hervé, J.M.: Analyse structurelle des mécanismes par groupe des déplacements. Mech. Mach. Theory 13, 437–450 (1978)

    Article  Google Scholar 

  • Huang, Z., Li, Q.C.: General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators. Int. J. Robot. Res. 21, 131–145 (2002)

    Article  Google Scholar 

  • Huang, Z., Liu, J.F., Li, Q.C.: A unified methodology for mobility analysis based on screw theory. Smart Devices and Machines for Advanced Manufacturing, pp. 49–78. Springer, London (2008)

    Chapter  Google Scholar 

  • Hunt, K.H.: Kinematic Geometry of Mechanisms. Oxford University Press, New York (1978)

    Google Scholar 

  • Kong, X.W., Gosselin, C.: Type Synthesis of Parallel Mechanisms. Springer, New York (2007)

    Google Scholar 

  • Liu, C., Yao, Y.A.: A biped robot with 3T manipulation ability. Ind. Robot Int. J. 40, 382–401 (2013)

    Article  Google Scholar 

  • Liu, C.H., Yao, Y.A., Li, R.M., Tian, Y.B., Zhang, N., Ji, Y.Y., Kong, F.Z.: Rolling 4R linkages. Mech. Mach. Theory 48, 1–14 (2012a)

    Article  Google Scholar 

  • Liu, C., Yang, H.H., Yao, Y.A.: A family of biped mechanisms with two revolute and two cylindric joints. J. Mech. Robot. 4, 045002 (2012b)

    Article  Google Scholar 

  • Lum, H.K., Zribi, M., Soh, Y.C.: Planning and control of a biped robot. Int. J. Eng. Sci. 37, 1319–1349 (1999)

    Article  MathSciNet  Google Scholar 

  • Ma, O., Angeles, J.: Architecture singularities of platform manipulators. In: IEEE International Conference on Robotics and Automation (1991)

  • McCarthy, J.M.: Geometric Design of Linkages. Springer, New York (2000)

    Google Scholar 

  • Miao, Z.H., Yao, Y.A., Kong, X.W.: Biped walking robot based on a 2-UPU + 2-UU parallel mechanism. Chin. J. Mech. Eng. 27, 269–278 (2014)

    Article  Google Scholar 

  • Milenkovic, P., Brown, M.V.: Properties of the Bennett mechanism derived from the RRRS closure ellipse. J. Mech. Robot. 3, 021012–021018 (2011)

    Article  Google Scholar 

  • Mohamed, K.T., Ata, A.A., EI-Souhily, B.M.: Dynamic analysis algorithm for a micro-robot for surgical applications. Int. J. Mech. Mater. Des. 7, 17–28 (2011)

    Article  Google Scholar 

  • Tian, Y.B., Wei, X.Z., Joneja, A., Yao, Y.A.: Sliding-crawling parallelogram mechanism. Mech. Mach. Theory 78, 201–228 (2014)

    Article  Google Scholar 

  • Wang, N.Y., Fang, Y.F., Qu, H.B.: A novel spatial mechanism for deployable structures. In: Proceedings of the Third International Conference on Mechanical Engineering and Mechanics, pp. 69–74 (2009)

  • Wohlhart, K.: Kinematotropic linkages. Recent Advances in Robot Kinematics, pp. 359–368. Springer, Netherlands (1996)

    Chapter  Google Scholar 

  • Zeng, Q., Fang, Y.F., Ehmann, K.F.: Design of a novel 4-DOF kinematotropic hybrid parallel manipulator. J. Mech. Des. 133, 121006–121009 (2011)

    Article  Google Scholar 

  • Zhang, L., Wang, D., Dai, J.S.: Biological modeling and evolution based synthesis of metamorphic mechanisms. J. Mech. Des. 130, 072303–072311 (2008)

    Article  Google Scholar 

  • Zhang, K.T., Dai, J.S., Fang, Y.F.: Topology and constraint analysis of phase change in the metamorphic chain and its evolved mechanism. J. Mech. Des. 132, 121001–121011 (2010)

    Article  Google Scholar 

  • Zhang, D., Gao, Z., Fassi, I.: Design optimization of a spatial hybrid mechanism for micromanipulation. Int. J. Mech. Mater. Des. 7, 55–70 (2011)

    Article  Google Scholar 

  • Zhang, D., Su, X.P., Gao, Z., et al.: Design, analysis and fabrication of a novel three degrees of freedom parallel robotic manipulator with decoupled motions. Int. J. Mech. Mater. Des. 9, 199–212 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundations of China [Grant Number 51175029].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuefa Fang.

Appendix

Appendix

$$ \rho_{1} = - \frac{{\delta z_{A} z_{C} (x_{B} z_{A} - x_{A} z_{B} )}}{{ - x_{C} y_{A} (z_{A} + z_{B} ) - \delta z_{A} z_{C} (x_{A} + x_{B} )}} $$
$$ \sigma_{1} = - \frac{{z_{A} x_{C} (x_{B} z_{A} - x_{A} z_{B} )}}{{x_{C} y_{A} (z_{A} - z_{B} ) + \delta z_{A} z_{C} (x_{A} - x_{B} )}} $$
$$ \rho_{2} = \frac{{y_{A} z_{C} (z_{A} - z_{B} ) + \delta z_{A} z_{C} (z_{A} - z_{B} )}}{{ - x_{C} y_{A} (z_{A} + z_{B} ) - \delta z_{A} z_{C} (x_{A} + x_{B} )}} $$
$$ \sigma_{2} = \frac{{z_{A} ( - x_{C} z_{A} + x_{C} z_{B} + x_{A} z_{C} - x_{B} z_{C} )}}{{x_{C} y_{A} (z_{A} - z_{B} ) + \delta z_{A} z_{C} (x_{A} - x_{B} )}} $$
$$ \delta = \frac{{ - n_{7} x_{C} y_{B} + n_{7} x_{C} y_{C} + l_{7} y_{B} z_{C} - l_{7} y_{C} z_{C} }}{{z_{C} (n_{7} x_{B} - n_{7} x_{C} - l_{7} z_{B} + l_{7} z_{C} )}} $$
$$ \rho '_{1} = - z_{A} z_{C} (y_{B} - y_{C} )(x_{B} z_{A} - x_{A} z_{B} ) $$
$$ \sigma '_{1} = - \eta x_{C} z_{A} (x_{B} z_{A} - x_{A} z_{B} )(z_{B} - z_{C} ) $$
$$ \rho '_{2} = - \eta y_{A} z_{C} (z_{A} - z_{B} )(y_{C} z_{B} - y_{B} z_{C} ) $$
$$ \sigma '_{2} = \eta z_{A} z_{C} (x_{A} - x_{B} )( - y_{C} z_{B} + y_{B} z_{C} ) $$
$$ \rho '_{3} = - \frac{{z_{C} }}{{x_{C} }} + \frac{{\eta z_{A} z_{C} }}{{x_{C} }}(y_{B} - y_{C} )[x_{C} (z_{A} - z_{B} ) + z_{C} ( - x_{A} + x_{B} )] $$
$$ \sigma '_{3} = - \eta z_{A} (z_{B} - z_{C} )[x_{C} (z_{A} - z_{B} ) + z_{C} ( - x_{A} + x_{B} )] $$
$$ \eta = \left[ {x_{C} y_{A} (z_{A} - z_{B} )(z_{B} - z_{C} ) - z_{A} z_{C} (x_{A} - x_{B} )(y_{B} - y_{C} )} \right]^{ - 1} $$
$$ q_{3} = 2Lc\theta_{2} \;r_{3} = 2Ls\theta_{2} \;p_{4} = - 2Lc\theta_{2} \;r_{4} = 2L $$
$$ p_{5} = L[ - 2c\theta_{2} + c(\theta_{23} - \theta_{4} ) + c\theta_{234} - 2s\theta_{23} ] $$
$$ r_{5} = 2L - 2Ls\theta_{4} \;p_{8} = - 2Lc\theta_{1} \;r_{8} = 2Ls\theta_{1} $$
$$ l_{7} = Lc(\theta_{1} - \theta_{8} )\;n_{7} = - Ls(\theta_{1} - \theta_{8} )\;p_{7} = - 2L^{2} s(\theta_{1} - \theta_{8} ) $$
$$ q_{7} = 2L^{2} c\theta_{8} \;r_{7} = - 2L^{2} c(\theta_{1} - \theta_{8} ) $$
$$ p_{6} = - 2L^{2} (c\theta_{23} - s\theta_{2} + c\theta_{4} s\theta_{23} )s(\theta_{1} - \theta_{8} ) $$
$$ \begin{gathered} q_{6} = 2L^{2} [c\theta_{3} c(\theta_{1} - \theta_{8} )s\theta_{2} \hfill \\ \;\;\;\;\;\; - c\theta_{2} c(\theta_{1} - \theta_{8} )( - 1 + c\theta_{3} c\theta_{4} - s\theta_{3} ) \hfill \\ \;\;\;\;\; + c\theta_{4} c(\theta_{1} - \theta_{8} )s\theta_{2} s\theta_{3} + s(\theta_{1} - \theta_{8} ) - s\theta_{4} s(\theta_{1} - \theta_{8} )] \hfill \\ \end{gathered} $$
$$ r_{6} = - 2L^{2} c(\theta_{1} - \theta_{8} )(c\theta_{23} - s\theta_{2} + c\theta_{4} s\theta_{23} ) $$
$$ q_{3}^{\prime} = 2Lc\theta_{2} \;r_{3}^{\prime} = 2Ls\theta_{2} \;p_{4}^{\prime} = - 2Lc\theta_{2} \;r_{4}^{\prime} = 2L $$
$$ p_{5}^{,} = L( - 2c\theta_{2} + c(\theta_{23} - \theta_{4} ) + c\theta_{234} - 2s\theta_{23} ) $$
$$ r_{5}^{\prime} = 2L - 2Ls\theta_{4} $$
$$ p_{8}^{\prime} = - 2Lc\theta_{1} \;r_{8}^{\prime} = 2Ls\theta_{1} \;q_{7}^{,} = 2Lc\theta_{1} \;r_{7}^{\prime} = - 2L $$
$$ q_{6}^{\prime} = - L( - 2c\theta_{2} + c(\theta_{23} - \theta_{4} ) + c\theta_{234} - 2s\theta_{23} ) $$
$$ r_{6}^{\prime} = - 2L(c\theta_{23} - s\theta_{2} + c\theta_{4} s\theta_{23} ) $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Fang, Y. & Zhang, D. A spatial single loop kinematotropic mechanism used for biped/wheeled switchable robots. Int J Mech Mater Des 11, 287–299 (2015). https://doi.org/10.1007/s10999-014-9274-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-014-9274-x

Keywords

Navigation