Skip to main content
Log in

Non-covalent Interactions Guide the Structural Plasticity of Desmin Tubulin Binding Peptides: A Molecular Mechanics and Molecular Dynamics Study

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Tubulin binding compounds are key players in orchestrating anticancer effects by modulating microtubule dynamics that in turn disrupts cell motility and promotes apoptosis. However, their clinical application is limited by high toxicity resulting from their lack of specificity for cancer cells. Consequently, identifying microtubule interacting agents that demonstrate higher specificity for tumor cells continues to be a key objective in the search for more effective cancer treatments. In this context, small tubulin binding peptides (22–35 amino acids) from some intermediate filaments (IFs) were reported to bind unassembled tubulin and disrupt microtubules. To date there are no structural studies on these peptides as it is difficult to crystallize IF proteins. To narrow this wide gap in knowledge, two such peptides corresponding to the tubulin binding sites of the IF protein Desmin were studied using molecular mechanics and molecular dynamics based techniques. This is the first report on the structural plasticity of these peptides and sheds light on the imperative role of non-covalent interactions in directing the secondary structures. These findings shall be significant in guiding and facilitating the future efforts of designing peptide based anti-mitotic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alber F, Kuonen O, Scapozza L, Folkers G, Carloni P (1998) Density functional studies on herpes simplex virus type 1 thymidine kinase-substrate interactions: the role of Tyr-172 and Met-128 in thymine fixation. Proteins Struct Funct Gene 31:453–459

    Article  CAS  Google Scholar 

  • Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Askew B, Ballester P, Buhr C, Jeong KS, Jones S, Parris K, Williams K, Rebek J (1989) Molecular recognition with convergent functional groups VI: synthetic and structural studies with a model receptor for nucleic acid components. J Am Chem Soc 111:1082–1090

    Article  CAS  Google Scholar 

  • BenTal N, Sitkoff D, Topol IA, Yang AS, Burt SK, Honig B (1997) Free energy of amide hydrogen bond formation in vacuum, in water, and in liquid alkane solution. J Phys Chem B 101:450–457

    Article  CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, Van Gunsteren WF, Hermans J (1981) Intermolecular forces: interaction models for water in relation to protein hydration. D Reidel Publishing Company, Dordrecht, pp 331–342

    Book  Google Scholar 

  • Berendsen HJC, Postma JPM, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  • Berges R, Balzeau J, Takahashi M, Prevost C, Eyer J (2012a) Structure-function analysis of the glioma targeting NFL-TBS.40-63 peptide corresponding to the tubulin- binding site on the light neurofilament. PLoS ONE 7(11):e49436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berges R, Julien B, Peterson AC, Eyer J (2012b) A tubulin binding peptide targets glioma cells disrupting their microtubulules, blocking migration, and inducing apoptosis. J Am Soc Genes Cell Ther 10:1038–1045

    Google Scholar 

  • Bocquet A, Berges R, Robert P, Perterson AC, Eyer J (2009) Neurofilaments bind tubulin and modulate its polymerization. J Neurosci 29:11043–11054

    Article  CAS  PubMed  Google Scholar 

  • Brana MF, Cacho M, Gradillas A, Pascual-Teresa B, Ramos A (2001) Intercalators as anticancer drugs. Curr Pharm Des 7:1745–1780

    Article  CAS  PubMed  Google Scholar 

  • Brown TL, LeMay HE, Bursten BE, Burdge JR (2003) Chemistry: the chemical science. Pearson education, Upper Saddle River, p 414

    Google Scholar 

  • Bruno IJ, Cole JC, Lommerse JPM, Rowland RS, Taylor R, Verdonk ML (1997) IsoStar: a library of information about nonbonded interactions. J Comput Aided Mol Des 11:525–537

    Article  CAS  PubMed  Google Scholar 

  • Buchan DW, Ward SM, Lobley AE, Nugent TC, Bryson K, Jones DT (2010) Protein annotation and modelling servers at University College London. Nucl Acids Res 38:W563–W568, http://bioinf.cs.ucl.ac.uk/index.php?id=779

  • Budman DR (1997) Vinorelbine (Navelbine): a third-generation vinca alkaloid. Cancer Invest 15:475–490

    Article  CAS  PubMed  Google Scholar 

  • BuÈrgi R, Daura X, Mark A, Bellanda M, Mammi S, Peggion E, van Gunsteren WF (2001) Folding study of an Aib-rich peptide in DMSO by molecular dynamics simulations. J Peptide Res 57:107–118

    Article  Google Scholar 

  • Burley SK, Petsko GA (1985) Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229:23–28

    Article  CAS  PubMed  Google Scholar 

  • Cavaletti G, Cavalletti E, Montaguti P, Oggioni N, De Negri O, Tredici G (1997) Effect on the peripheral nervous system of the short-term intravenous administration of paclitaxel in the rat. Neurotoxicology 18:137–145

    CAS  PubMed  Google Scholar 

  • Claessens CG, Stoddart JF (1997) p-p Interactions in Self-Assembly. J Phys Org Chem 110:254

    Article  Google Scholar 

  • Curtis MD, Cao J, Kampf JW (2004) Solid-state packing of conjugated oligomers: from p stacks to the herringbone structure. J Am Chem Soc 126:4318

    Article  CAS  PubMed  Google Scholar 

  • Dahl T (1994) The nature of stacking interactions between organic molecules elucidated by analysis of crystal structures. Acta Chem Scand 48:95–106

    Article  CAS  Google Scholar 

  • Deshayes S, Heitz A, Morris MC, Charnet P, Divita G, Heitz F (2004) Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis. Biochemistry 43(6):1449–1457

    Article  CAS  PubMed  Google Scholar 

  • Dinadayalane TC, Gorb L, Simeon T, Dodziuk H (2007) Cumulative pi-pi Interaction triggers unusually high stabilization of linear hydrocarbons inside the single-walled carbon nanotube. Int J Quantum Chem 107:2204

    Article  CAS  Google Scholar 

  • Dumontet C, Sikic BI (1999) Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J Clin Oncol 17:1061–1070

    CAS  PubMed  Google Scholar 

  • Eistner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) Hydrogen bonding and stacking interactions of nucleic base pairs: a density-functional-theory based treatment. J Chem Phys 114:5149–5155

    Article  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8592

    Article  CAS  Google Scholar 

  • Fyfe CT, Stoddart JF (1997) Synthetic supramolecular chemistry. Acc Chem Res 110:393

    Article  Google Scholar 

  • Giannakakou P, Sackett DL, Kang YK, Zhan Z, Buters JT, Fojo T, Poruchynsky MS (1997) Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 272:17118–17125

    Article  CAS  PubMed  Google Scholar 

  • Gilman AG, Rall TW, Mies AS, Taylor P (1993) The pharmaceutical basis of therapeutics. McGraw Hill, New York

    Google Scholar 

  • Grimme S, Muck-Kichtenfeld C, Antony J (2007) Non-covalent interactions between graphene sheets in multishell (Hyper) fullerenes. J Phys Chem 111:11199

    CAS  Google Scholar 

  • Guex N, Diemand A, Peitsch MC (1999) Protein modeling for all. Trends Biochem Sci 24:364–367

    Article  CAS  PubMed  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) A linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Hobza P, Selzle HL, Schlag EW (1994) Potential energy surface of the benzene dimer: ab initio theoretical study. J Am Chem Soc 116:3500–3506

    Article  CAS  Google Scholar 

  • Hobza P, Selzle HL, Schlag EW (1996) Potential energy surface for the benzene dimer. Results of ab initio CCSD (T) calculations show two nearly isoenergetic structures: t-shaped and parallel-displaced. J Phys Chem 100:18790–18794

    Article  CAS  Google Scholar 

  • Hockney RW, Eastwood JW (1981) Computer simulation using particles. McGraw-Hill, New York

    Google Scholar 

  • Holland JF, Scharlau C, Gailani S, Krant MJ, Olson KB, Horton J, Shnider BI, Lynch JJ, Owens A, Carbone PP, Colsky J, Grob D, Miller SP, Hall TC (1973) Vincristine treatment of advanced cancer: a cooperative study of 392 cases. Cancer Res 33:1258–1264

    CAS  PubMed  Google Scholar 

  • Hunter CA (1994) The role of aromatic interactions in molecular recognition. Chem Soc Rev 23:101–109

    Article  CAS  Google Scholar 

  • Hunter CA, Singh J, Thornton JM (1991) π–π Interactions: the geometry and energetics of phenylalanine–phenylalanine interactions in proteins. J Mol Biol 218:837–846

    Article  CAS  PubMed  Google Scholar 

  • Hussain M, Wozniak AJ, Edelstein MB (1993) Neurotoxicity of antineoplastic agents. Crit Rev Oncol Hematol 14:61–75

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Doi M, Ueda H, Inoue M, Scheldrick BM (1988) Specific ring stacking interaction on the tryptophan-7-methylguanine system: comparative crystallographic studies of indole derivatives-7-methylguanine base, nucleoside, and nucleotide complexes. J Am Chem Soc 110:2286–2294

    Article  CAS  Google Scholar 

  • Jaffe RL, Smith GD (1996) A quantum chemistry study of benzene dimer. J Chem Phys 105:2780–2788

    Article  CAS  Google Scholar 

  • Jitariu LC, Wilson C, Hirst DM (1997) An ab initio study of dimethyl sulphoxide and its adducts with H2O, HCl and OH-. J Mol Struct (Theochem) 391:111–116

    Article  CAS  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  CAS  PubMed  Google Scholar 

  • Jordan MA (2012) Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem Anticancer Agents 2:1–17

    Article  Google Scholar 

  • Jordan MA, Wilson L (1998) Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol 10:123–130

    Article  CAS  PubMed  Google Scholar 

  • Julien B, Peterson A, Eyer J (2011) The Vimentin tubulin binding peptide (Vim-TBS.58-81) crosses the plasma membrane and enters the nuclei of human Glioma cells. J Int Pharm 423:77–83

    Google Scholar 

  • Jurečka P, Hobza P (2002) On the convergence of the (DeltaECCSD(T)-DeltaEMP2) term for complexes with multiple H-bonds. Chem Phys Lett 365:89–94

    Article  Google Scholar 

  • Jurečka P, Hobza P (2003) True stabilization energies for the optimal planar hydrogen bonded and stacked structures of guanine & cytosine, adenine & thymine and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD (T) levels and comparison with experiment. J Am Chem Soc 125:15608–15613

    Article  PubMed  Google Scholar 

  • Jurečka P, Sÿponer J, Hobza P (2004) Potential energy surface of the cytosine dimmer: mP2 complete basis set limit interaction energies, CCSD (T) correction term, and comparison with the AMBER force field. J Phys Chem B 108:5466–5471

    Article  Google Scholar 

  • Kamiichi K, Danshita M, Minamino N, Doi M, Ishidia T, Inoue M (1986) Indole ring binds to 7-methylguanine base by pi-pi stacking interaction. Crystal structure of 7-methylguanosine 5′-monophosphate-tryptamine complex. FEBS Lett 195:57–60

    Article  CAS  PubMed  Google Scholar 

  • Karle IL, Flippen-Anderson LJ, Uma K, Balaran P (1993) Unfolding of an α-helix in peptide crystal by salvation: conformational fragility in a hepta peptide. Biopolymers 33:827–837

    Article  CAS  PubMed  Google Scholar 

  • Kavallaris M, Tait AS, Walsh BJ, He L, Horwitz SB, Norris MD, Haber M (2001) Multiple microtubule alterations are associated with Vinca alkaloid resistance in human leukemia cells. Cancer Res 61:5803–5809

    CAS  PubMed  Google Scholar 

  • Lehmann SM, Stansfield R (1989) Binding of dimethyl sulfoxide to lysozymen in crystals, studied with neutron diffraction. Biochemistry 28:7028–7033

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Muller-Plathe F, Van Gunsteren WF (1995) A force field for liquid dimethyl sulfoxide and physical properties of liquid dimethyl sulfoxide calculated using molecular dynamics simulation. J Am Chem Soc 117:4363–4366

    Article  CAS  Google Scholar 

  • Maccallum PH, Poet R, Milner-White EJ (1995a) Coulombic attractions between partially charged main chain atoms stabilize the right handed twist found between in most betastrands. J Mol Biol 248:361–373

    CAS  PubMed  Google Scholar 

  • Maccallum PH, Poet R, Milner-White EJ (1995b) Coulombic attractions between partially charged main chain atoms stabilize the right handed twist found between in most betastrands. J Mol Biol 248:374–384

    CAS  PubMed  Google Scholar 

  • Mancia F, Smith GA, Evans PR (1999) Crystal structure of substrate complexes of methylmalonyl-CoA mutase. Biochemistry 38:7999–8005

    Article  CAS  PubMed  Google Scholar 

  • Martin V (1993) Overview of paclitaxel (TAXOL). Semin Oncol Nurs 9(4 Suppl 2):2–5

    CAS  PubMed  Google Scholar 

  • Maveyraud L, Massova I, Birck C, Miyashita K, Samama JP, Mobashery S (1996) Crystal structure of 6 alpha-(hydroxymethyl)penicillanate complexed to the TEM-1 beta-lactamase from Escherichia coli: evidence on the mechanism of action of a novel inhibitor designed by a computer-aided process. J Am Chem Soc 118:7435–7440

    Article  CAS  Google Scholar 

  • Metuzals J, Mushynsk WE (1974) Electron-microscope and experimental investigations of neurofilamentous network in Deiters neurons-relationship with cell-surface and nuclear-pores. J Cell Biol 61:701–722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer EA, Brenk R, Castellano RK, Furler M, Klebe G, Diederich F (2002) De novo design, synthesis, and in vitro evaluation of inhibitors for prokaryotic tRNA-guanine transglycosylase: a dramatic sulfur effect on binding affinity. ChemBioChem 3:250–253

    Article  CAS  PubMed  Google Scholar 

  • Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic ring in chemical and biological recognition. Angew Chem Int Ed 42:1210–1250

    Article  CAS  Google Scholar 

  • Miranda LP, Alewood PF (1999) Chemistry-accelerated chemical synthesis of peptides and small proteins. Proc Natl Acad Sci USA 96:1181–1186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitchell JBO, Price SL (1990) The nature of the N–H O=C hydrogen bond—an intermolecular perturbation-theory study of the formamide formaldehyde complex. J Comput Chem 11:1217–1233

    Article  CAS  Google Scholar 

  • Mollinedo F, Gajate C (2003) Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 8:413–450

    Article  CAS  PubMed  Google Scholar 

  • Pal D, Chakrabarti PJ (2001) Non-hydrogen bond interactions involving the methionine sulfur atom. Biomol Str Dyn 19:115–128

    Article  CAS  Google Scholar 

  • Pilger BD, Perozzo R, Alber F, Wurth C, Folkers G, Scapozza L (1999) Substrate diversity of herpes simplex virus thymidine kinase-Impact of the kinematics of the enzyme. J Biol Chem 274:31967–31973

    Article  CAS  PubMed  Google Scholar 

  • Rebek J (1996) Assembly and encapsulation with self-complementary molecules. Chem Soc Rev 25:255–264

    Article  CAS  Google Scholar 

  • Rowinsky EK (1997) The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu Rev Med 48:353–374

    Article  CAS  PubMed  Google Scholar 

  • Rÿeha D, Kabela´c M, Ryja´cˇek F, Sÿponer J, Sÿponer JE, Elstner M, Suhai S, Hobza P (2002) Intercalators. 1. Nature of stacking interactions between intercalators (ethidium, daunomycin, ellipticine, and 4′,6-diaminide-2-phenylindole) and DNA base pairs. Ab initio quantum chemical, density functional theory, and empirical potential study. J Am Chem Soc 124:3366–3376

    Article  Google Scholar 

  • Saenger W (1984) Principles of nucleic acid structure. Springer, New York

    Book  Google Scholar 

  • Schiller JH (1998) Role of taxanes in lung-cancer chemotherapy. Cancer Invest 16:471–477

    Article  CAS  PubMed  Google Scholar 

  • Schmid ED, Brodbek E (1985) Raman intensity calculations with the CNDO method. Part III: N, N-dimethylamide- water complexes. Can J Biophys 63:1365–1371

    CAS  Google Scholar 

  • Schrijvers D, Vermorken JB (1998) Update on the taxoids and other new agents in head and neck cancer therapy. Curr Opin Oncol 10:233–241

    Article  CAS  PubMed  Google Scholar 

  • Sebo L, Schweizer B, Diederich F (2000) Cleft-type diamidinium receptors for dicarboxylate binding in protic solvents. Helv Chim Acta 83:80–92

    Article  CAS  Google Scholar 

  • Singer SJ (1962) The properties of proteins in non aqueous solvents. Adv Protein Chem 17:1–68

    Article  CAS  Google Scholar 

  • Sinnokrot MO, Sherrill CD (2006) High-accuracy quantum mechanical studies of ð-ð interactions in benzene dimers. J Phys Chem A 110:10656–10668

    Article  CAS  PubMed  Google Scholar 

  • Smithrud DB, Diederich F (1990) Strength of molecular complexation of apolar solutes in water and in organic solvents is predictable by linear free energy relationships: a general model for solvation effects on apolar binding. J Am Chem Soc 112:339–343

    Article  CAS  Google Scholar 

  • Stapley BJ, Rohl CA, Doig AJ (1995) Addition of side-chain interactions to modified Lifson-Roig helix-coil theory—application to energetic of phenylalanine-methionine interactions. Protein Sci 4:2383–2391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sÿpirko V, Engkvist O, Solda P, Selzle HL, Schlag EW, Hobza P (1999) Structure and vibrational dynamics of the benzene dimer. J Chem Phys 111:572–582

    Article  Google Scholar 

  • Tatko C, Waters ML (2004) Investigation of the nature of the methionine-π interaction in β-hairpin peptide model systems. Protein Sci 13:2515–2522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Traub P, Nelson WJ, Kuhn S, Vorgias CE (1983) The interaction in vitro of the intermediate filament protein vimentin with naturally-occurring RNAs and DNAs. J Biol Chem 258:1456–1466

    CAS  PubMed  Google Scholar 

  • Traub P, Vorgias CE, Nelson WJ (1985) Interaction in vitro of the neurofilament triplet proteins from porcine spinal-cord with natural RNA and DNA. Mol Biol Rep 10:129–136

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuki S, Lu¨thi HP (2001) Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: assessing the PW91 model. J Chem Phys 114:3949–3957

    Article  CAS  Google Scholar 

  • Tsuzuki S, Uchimaru T, Tanabe K (1994) Basis set effects on the intermolecular interaction of hydrocarbon molecules obtained by an ab initio molecular orbital method: evaluation of dispersion energy. THEOCHEM 307:107–118

    Article  Google Scholar 

  • Tsuzuki S, Uchimaru T, Matsumura K, Mikami M, Tanabe K (2000) Effects of the higher electron correlation correction on the calculated intermolecular interaction energies of benzene and naphthalene dimers: comparison between MP2 and CCSD (T) calculations. Chem Phys Lett 319:547–554

    Article  CAS  Google Scholar 

  • Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2002a) Origin of attraction and directionality of the π/π interaction: model chemistry calculations of benzene dimer interaction. J Am Chem Soc 124:104–112

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuki S, Uchimaru T, Sugawara K, Mikami M (2002b) Energy profile of the interconversion path between t-shape and slipped-parallel benzene dimmers. J Chem Phys 117:11216–11221

    Article  CAS  Google Scholar 

  • Van de Craats AM, Warman JM, Mu¨llen K, Geerts Y, Brand JD (1998) Rapid charge transport along self-assembling graphitic nanowires. Adv Mater 10:36

    Article  Google Scholar 

  • Van der Spoel, Lindahl E, Hess B, Van burren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers ALTM, Feenstra KA, Van drnen R, Berendsen HJC (2005) Gromacs user manual version 3.3: www. Gromacs.org

  • Van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Hochschulverlag AG an der ETH Zürich, Switzerland, pp 1–1042

  • Viguera AR, Serrano L (1995) Side-chain interactions between sulfur containing amino acids and phenylalanine in α-helices. Biochemistry 34:8771–8779

    Article  CAS  PubMed  Google Scholar 

  • Voet D, Voet JG, Pratt CW (2004) Fundamentals of biochemistry. Wiley, New York

    Google Scholar 

  • Wild K, Bohner T, Folkers G, Schulz GE (1997) The structures of thymidine kinase from herpes simplex virus type 1 in complex with substrates and a substrate analogue. Protein Sci 6:2097–2106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • William RW, Chang A, Juretic D, Loughran S (1987) Secondary structure predictions and medium range interactions. Biochem Biophys Acta 916:200–204

    Google Scholar 

  • Windebank AJ (1999) Chemotherapeutic neuropathy. Curr Opin Neurol 12:565–571

    Article  CAS  PubMed  Google Scholar 

  • Wiseman LR, Spencer CM (1998) Paclitaxel. An update of its use in the treatment of metastatic breast cancer and ovarian and other gynaecological cancers. Drugs Aging 12:305–334

    Article  CAS  PubMed  Google Scholar 

  • Yun M, Park CG, Kim JY, Rock CO, Jackowski S, Park HW (2000) Structural basis for the feedback regulation of Escherichia coli pantothenate kinase by coenzyme A. J Biol Chem 275:28093–28099

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethical Standards

Funding

This study is a part of the masters’ degree project performed in the Department of Biophysics, Panjab University, Chandigarh.

Conflict of interest

There is no conflict to disclose.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avneet Saini.

Electronic supplementary material

Supporting information for various conformations of Des-TBS (1–27) and Des-TBS (436–456) at different temperatures after MM and MD energy calculations is given in Tables S1–S4. Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, A., Sharma, S. & Jaswal, R.R. Non-covalent Interactions Guide the Structural Plasticity of Desmin Tubulin Binding Peptides: A Molecular Mechanics and Molecular Dynamics Study. Int J Pept Res Ther 21, 459–478 (2015). https://doi.org/10.1007/s10989-015-9474-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-015-9474-8

Keywords

Navigation