Skip to main content

Advertisement

Log in

Issues and challenges in landscape models for agriculture: from the representation of agroecosystems to the design of management strategies

  • Perspective
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Agroecosystems produce food and many other services that are crucial for human well-being. Given the scales at which the processes underlying these services take place, agricultural landscapes appear as appropriate spatial units for their evaluation and management. The design of sustainable agricultural landscapes that value these services has thus become a pressing issue but faces major challenges stemming from the diversity of processes, their interactions and the number of scales at stake. Agricultural landscape modelling can provide a key contribution to this design but must still overcome several difficulties to offer reliable tools for decision makers.

Objectives

Our study aimed at shedding light on the main scientific and technical difficulties that make the building of landscape models that may efficiently inform decision-makers a complex task, as well as translating them in terms of challenges that can be further investigated and discussed.

Methods

We examine current issues and challenges and indicate future research needs to overcome the scientific and technical obstacles in the development of useful agricultural landscape models.

Results

We highlight research perspectives to better couple landscape patterns and process models and account for feedbacks, integrate the decisions of multiple stakeholders, consider the spatial and temporal heterogeneity of data and processes, explore alternative landscape organisations and assess multiobjective performance.

Conclusion

Coping with the issues and challenges discussed in this paper should improve our understanding of agroecosystems and give rise to new hypotheses, thereby informing future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bakker MM, Alam SJ, van Dijk J, Rounsevell MDA (2015) Land-use change arising from rural land exchange: an agent-based simulation model. Landscape Ecol 30:273–286

    Article  Google Scholar 

  • Beaumont MA (2010) Approximate bayesian computation in evolution and ecology. Annu Rev Ecol Evol Syst 41:379–406

    Article  Google Scholar 

  • Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services: relationships among multiple ecosystem services. Ecol Lett 12:1394–1404

    Article  PubMed  Google Scholar 

  • Betbeder J, Laslier M, Hubert-Moy L, Burel F, Baudry J (2017) Synthetic aperture radar (SAR) images improve habitat suitability models. Landscape Ecol 32:1867–1879

    Article  Google Scholar 

  • Bianchi FJJA, Honĕk A, van der Werf W (2007) Changes in agricultural land use can explain population decline in a ladybeetle species in the Czech Republic: evidence from a process-based spatially explicit model. Landscape Ecol 22:1541–1554

    Article  Google Scholar 

  • Bosch OJ, Gibson R, Kellner K, Allen W (1997) Using case-based reasoning methodology to maximise the use of knowledge to solve specific rangeland problems. J Arid Environ 35:549–557

    Article  Google Scholar 

  • Bourgeois A, Gaba S, Munier-Jolain N, Borgy B, Monestiez P, Soubeyrand S (2012) Inferring weed spatial distribution from multi-type data. Ecol Model 226:92–98

    Article  Google Scholar 

  • Bourhis Y, Poggi S, Mammeri Y, Cortesero A-M, Le Ralec A, Parisey N (2015) Perception-based foraging for competing resources: assessing pest population dynamics at the landscape scale from heterogeneous resource distribution. Ecol Model 312:211–221

    Article  Google Scholar 

  • Bourhis Y, Poggi S, Mammeri Y, Le Cointe R, Cortesero A-M, Parisey N (2017) Foraging as the landscape grip for population dynamics—a mechanistic model applied to crop protection. Ecol Model 354:26–36

    Article  Google Scholar 

  • Boussard H, Roche B, Joannon A, Martel G (2017) CAPFarm: a software for crop allocation problem at the farm and landscape levels. INRA, Rennes

    Google Scholar 

  • Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P, Riddell A (2017) Stan: a probabilistic programming language. J Stat Softw. https://doi.org/10.18637/jss.v076.i01

    Article  Google Scholar 

  • Castellazzi MS, Matthews J, Angevin F, Sausse C, Wood GA, Burgess PJ, Brown I, Conrad KF, Perry JN (2010) Simulation scenarios of spatio-temporal arrangement of crops at the landscape scale. Environ Model Softw 25:1881–1889

    Article  Google Scholar 

  • Clark JS (2004) Why environmental scientists are becoming Bayesians: modelling with Bayes. Ecol Lett 8:2–14

    Article  Google Scholar 

  • Cohen WB, Goward SN (2004) Landsat’s role in ecological applications of remote sensing. Bioscience 54:535

    Article  Google Scholar 

  • Coléno FC (2008) A simulation model to evaluate the consequences of Genetic Modification and non-Genetic Modification segregation rules on landscape organisation. J Int Farm Manag 4:33–45

    Google Scholar 

  • Cressie N, Calder CA, Clark JS, Hoef JMV, Wikle CK (2009) Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecol Appl 19:553–570

    Article  PubMed  Google Scholar 

  • Csilléry K, François O, Blum MGB (2012) abc: an R package for approximate Bayesian computation (ABC). Methods Ecol Evol 3:475–479

    Article  Google Scholar 

  • Cushman SA, Evans JS, McGarigal K (2010) Landscape ecology: past, present, and future. In: Cushman SA, Huettmann F (eds) Spatial complexity, informatics, and wildlife conservation. Springer, Tokyo, pp 65–82

    Chapter  Google Scholar 

  • de Valpine P, Turek D, Paciorek CJ, Anderson-Bergman C, Lang DT, Bodik R (2017) Programming with models: writing statistical algorithms for general model structures with NIMBLE. J Comput Graph Stat 26:403–413

    Article  Google Scholar 

  • Degenne P, Lo Seen D, Parigot D, Forax R, Tran A, Ait Lahcen A, Curé O, Jeansoulin R (2009) Design of a domain specific language for modelling processes in landscapes. Ecol Model 220:3527–3535

    Article  Google Scholar 

  • Dusseux P, Corpetti T, Hubert-Moy L, Corgne S (2014) Combined use of multi-temporal optical and radar satellite images for grassland monitoring. Remote Sens 6:6163–6182

    Article  Google Scholar 

  • Etherington TR, Holland EP, O’Sullivan D (2015) NLMpy: a python software package for the creation of neutral landscape models within a general numerical framework. Methods Ecol Evol 6:164–168

    Article  Google Scholar 

  • Forman RTT (1995) Some general principles of landscape and regional ecology. Landscape Ecol 10:133–142

    Article  Google Scholar 

  • Forman RTT, Godron M (1986) Landscape Ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Fortin M-J, James PMA, MacKenzie A, Melles SJ, Rayfield B (2012) Spatial statistics, spatial regression, and graph theory in ecology. Spat Stat 1:100–109

    Article  Google Scholar 

  • Gaucherel C, Boudon F, Houet T, Castets M, Godin C (2012) Understanding patchy landscape dynamics: towards a landscape language. PLoS ONE 7:e46064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke HH, Weiner J, Wiegand T, DeAngelis DL (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987–991

    Article  CAS  PubMed  Google Scholar 

  • Hartig F, Calabrese JM, Reineking B, Wiegand T, Huth A (2011) Statistical inference for stochastic simulation models—theory and application: inference for stochastic simulation models. Ecol Lett 14:816–827

    Article  PubMed  Google Scholar 

  • Houet T, Schaller N, Castets M, Gaucherel C (2014) Improving the simulation of fine-resolution landscape changes by coupling top-down and bottom-up land use and cover changes rules. Int J Geogr Inf Sci 28:1848–1876

    Article  Google Scholar 

  • Houet T, Verburg PH, Loveland TR (2010) Monitoring and modelling landscape dynamics. Landscape Ecol 25:163–167

    Article  Google Scholar 

  • Illian JB, Martino S, Sørbye SH, Gallego-Fernández JB, Zunzunegui M, Esquivias MP, Travis JMJ (2013) Fitting complex ecological point process models with integrated nested Laplace approximation. Methods Ecol Evol 4:305–315

    Article  Google Scholar 

  • Jabot F, Faure T, Dumoulin N (2013) EasyABC: performing efficient approximate Bayesian computation sampling schemes using R. Methods Ecol Evol 4:684–687

    Article  Google Scholar 

  • Kehoe L, Romero-Muñoz A, Polaina E, Estes L, Kreft H, Kuemmerle T (2017) Biodiversity at risk under future cropland expansion and intensification. Nat Ecol Evol 1:1129–1135

    Article  PubMed  Google Scholar 

  • Kiêu K, Adamczyk-Chauvat K, Monod H, Stoica RS (2013) A completely random T-tessellation model and Gibbsian extensions. Spat Stat 6:118–138

    Article  Google Scholar 

  • Lamboni M, Monod H, Makowski D (2011) Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Reliab Eng Syst Saf 96:450–459

    Article  Google Scholar 

  • Lausch A, Blaschke T, Haase D, Herzog F, Syrbe R-U, Tischendorf L, Walz U (2015) Understanding and quantifying landscape structure—a review on relevant process characteristics, data models and landscape metrics. Ecol Model 295:31–41

    Article  Google Scholar 

  • Le Ber F, Dolques X, Martin L, Mille A, Benoît M (2017) A reasoning model based on perennial crop allocation cases and rules. In: Aha DW, Lieber J (eds) Case-based reasoning research and development. Springer International Publishing, Cham, pp 61–75

    Chapter  Google Scholar 

  • Le Ber F, Lavigne C, Adamczyk K, Angevin F, Colbach N, Mari JF, Monod H (2009) Neutral modelling of agricultural landscapes by tessellation methods-application for gene flow simulation. Ecol Model 220:3536–3545

    Article  Google Scholar 

  • Lepczyk CA, Lortie CJ, Anderson LJ (2008) An ontology for landscapes. Ecol Complex 5:272–279

    Article  Google Scholar 

  • Lunn D, Spiegelhalter D, Thomas A, Best N (2009) The BUGS project: evolution, critique and future directions. Stat Med 28:3049–3067

    Article  PubMed  Google Scholar 

  • Malawska A, Topping CJ (2017) Applying a biocomplexity approach to modelling farmer decision-making and land use impacts on wildlife. J Appl Ecol. https://doi.org/10.1111/1365-2664.13024

    Article  Google Scholar 

  • Martel G, Aviron S, Joannon A, Lalechère E, Roche B, Boussard H (2017) Impact of farming systems on agricultural landscapes and biodiversity: from plot to farm and landscape scales. Eur J Agron. https://doi.org/10.1016/j.eja.2017.07.014

    Article  Google Scholar 

  • Martin E, Gascoin S, Grusson Y, Murgue C, Bardeau M, Anctil F, Ferrant S, Lardy R, Le Moigne P, Leenhardt D, Rivalland V, Sánchez Pérez J-M, Sauvage S, Therond O (2016) On the use of hydrological models and satellite data to study the water budget of river basins affected by human activities: examples from the Garonne Basin of France. Surv Geophys 37:223–247

    Article  Google Scholar 

  • McIntire EJB, Fajardo A (2009) Beyond description: the active and effective way to infer processes from spatial patterns. Ecology 90:46–56

    Article  PubMed  Google Scholar 

  • Memmah M-M, Lescourret F, Yao X, Lavigne C (2015) Metaheuristics for agricultural land use optimization. A review. Agron Sustain Dev 35:975–998

    Article  Google Scholar 

  • Okin GS, las Heras MM, Saco PM, Throop HL, Vivoni ER, Parsons AJ, Wainwright J, Peters DP (2015) Connectivity in dryland landscapes: shifting concepts of spatial interactions. Front Ecol Environ 13:20–27

    Article  Google Scholar 

  • Papaïx J, Adamczyk-Chauvat K, Bouvier A, Kiêu K, Touzeau S, Lannou C, Monod H (2014) Pathogen population dynamics in agricultural landscapes: the Ddal modelling framework. Infect Genet Evol 27:509–520

    Article  PubMed  Google Scholar 

  • Pelosi C, Goulard M, Balent G (2010) The spatial scale mismatch between ecological processes and agricultural management: do difficulties come from underlying theoretical frameworks? Agric Ecosyst Environ 139:455–462

    Article  Google Scholar 

  • Plummer M (2003) JAGS: A Program for Analysis of Bayesian Graphical Models using Gibbs Sampling. In: Proceedings of the 3rd International Workshop on Distributed Statistical Computing. Vienna, Austria

  • Ricci B, Messéan A, Lelièvre A, Coléno F-C, Angevin F (2016) Improving the management of coexistence between GM and non-GM maize with a spatially explicit model of cross-pollination. Eur J Agron 77:90–100

    Article  Google Scholar 

  • Rounsevell MDA, Arneth A (2011) Representing human behaviour and decisional processes in land system models as an integral component of the earth system. Glob Environ Change 21:840–843

    Article  Google Scholar 

  • Saint-Geours N, Bailly J-S, Grelot F, Lavergne C (2014) Multi-scale spatial sensitivity analysis of a model for economic appraisal of flood risk management policies. Environ Model Softw 60:153–166

    Article  Google Scholar 

  • Schaller N, Lazrak EG, Martin P, Mari J-F, Aubry C, Benoît M (2012) Combining farmers’ decision rules and landscape stochastic regularities for landscape modelling. Landscape Ecol 27:433–446

    Article  Google Scholar 

  • Schirpke U, Leitinger G, Tappeiner U, Tasser E (2012) SPA-LUCC: developing land-use/cover scenarios in mountain landscapes. Ecol Inform 12:68–76

    Article  Google Scholar 

  • Sciaini M (2018) Package “NMLR”: Simulating Neutral Landscape Models. R Package Version 030

  • Soubeyrand S, Roques L (2014) Parameter estimation for reaction-diffusion models of biological invasions. Popul Ecol 56:427–434

    Article  Google Scholar 

  • Stratonovitch P, Elias J, Denholm I, Slater R, Semenov MA (2014) An individual-based model of the evolution of pesticide resistance in heterogeneous environments: control of Meligethes aeneus population in oilseed rape crops. PLoS ONE 9:e115631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thenail C, Joannon A, Capitaine M, Souchère V, Mignolet C, Schermann N, Di Pietro F, Pons Y, Gaucherel C, Viaud V, Baudry J (2009) The contribution of crop-rotation organization in farms to crop-mosaic patterning at local landscape scales. Agric Ecosyst Environ 131:207–219

    Article  Google Scholar 

  • Tieskens KF, Shaw BJ, Haer T, Schulp CJE, Verburg PH (2017) Cultural landscapes of the future: using agent-based modeling to discuss and develop the use and management of the cultural landscape of South West Devon. Landscape Ecol 32:2113–2132

    Article  Google Scholar 

  • Todeschini A, Caron F, Fuentes M, Legrand P, Del Moral P (2014) Biips: Software for Bayesian Inference with Interacting Particle Systems. arXiv:1412.3779

  • Topping CJ, Odderskær P, Kahlert J (2013) Modelling Skylarks (Alauda arvensis) to Predict impacts of changes in land management and policy: development and testing of an agent-based model. PLoS ONE 8:e65803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice: pattern and process. Springer, New York

    Google Scholar 

  • Verburg PH, Dearing JA, Dyke JG, van der Leeuw S, Seitzinger S, Steffen W, Syvitski J (2016) Methods and approaches to modelling the Anthropocene. Glob Environ Change 39:328–340

    Article  Google Scholar 

  • Verburg PH, Overmars KP (2009) Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecol 24:1167–1181

    Article  Google Scholar 

  • Viaud V, Monod H, Lavigne C, Angevin F, Adamczyk K (2008) Spatial sensitivity of maize gene-flow to landscape pattern: a simulation approach. Landscape Ecol 23:1067–1079

    Article  Google Scholar 

  • Villa-Vialaneix N, Follador M, Ratto M, Leip A (2012) A comparison of eight metamodeling techniques for the simulation of N2O fluxes and N leaching from corn crops. Environ Model Softw 34:51–66

    Article  Google Scholar 

  • Vinatier F, Chauvet M (2017) A neutral model for the simulation of linear networks in territories. Ecol Model 363:8–16

    Article  Google Scholar 

  • Vinatier F, Gosme M, Valantin-Morison M (2012) A tool for testing integrated pest management strategies on a tritrophic system involving pollen beetle, its parasitoid and oilseed rape at the landscape scale. Landscape Ecol 27:1421–1433

    Article  Google Scholar 

  • Vinatier F, Lagacherie P, Voltz M, Petit S, Lavigne C, Brunet Y, Lescourret F (2016) An unified framework to integrate biotic, abiotic processes and human activities in spatially explicit models of agricultural landscapes. Front Environ Sci. https://doi.org/10.3389/fenvs.2016.00006

    Article  Google Scholar 

  • Wegmann D, Leuenberger C, Neuenschwander S, Excoffier L (2010) ABCtoolbox: a versatile toolkit for approximate Bayesian computations. BMC Bioinformatics 11:116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiens JA (1989) The ecology of bird communities. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wu J (2013) Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landscape Ecol 28:999–1023

    Article  Google Scholar 

Download references

Acknowledgements

Support was provided by the PAYOTE scientific network, which is funded by the French National Institute for Agricultural Research (INRA). Authors are grateful to many colleagues for fruitful discussions which contributed to this paper. We thank anonymous reviewers for their helpful comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Poggi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poggi, S., Papaïx, J., Lavigne, C. et al. Issues and challenges in landscape models for agriculture: from the representation of agroecosystems to the design of management strategies. Landscape Ecol 33, 1679–1690 (2018). https://doi.org/10.1007/s10980-018-0699-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-018-0699-8

Keywords

Navigation