Skip to main content
Log in

Insights into how carbon chain length and branch position of alcohol solvents affect solid–liquid thermodynamic behavior of form I of probucol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To address the problem that how straight-chain and branched solvent affect the solubility of active pharmaceutical ingredient, in this work, the molar fraction solubility of form I of probucol in five alcohols with straight and branched alcohols was determined by gravimetric method ranging from 278.15 to 323.15 K. The results showed that the equilibrium solubility of probucol is temperature-dependent and increased monotonically with temperature. More importantly, our findings show that the solubility of probucol rose as the number of straight-chain carbons grew and that it is more soluble in straight-chain alcohols than in branched alcohols with an equivalent carbon count. Furthermore, we conclude that the solubility of probucol in various solvents in straight-chain alcohols is co-dominated by solvent polarity and cohesive energy density, while in branched alcohols, the solubility of PBL is co-dominated by steric hindrance and temperature. Then, three thermodynamic models were employed to correlate the experimental solubility data and derive the dissolution thermodynamic properties of PBL. Our results indicated that except for ethanol, the dissolution process of PBL in other alcohols is enthalpy-driven and spontaneous, while in the case of ethanol, the dissolution of PBL transforms from entropy-driven to enthalpy-driven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

a 1, a 2 :

The activities of the solute and solvent, respectively

A, B, C :

The parameters of the Apelblat model

H E :

The excess enthalpy (kJ mol−1)

m 1 :

The mass of form I of PBL (g)

m 2 :

The mass of solvent (g)

M 1 :

The molecular mass of form I of PBL (g mol−1)

M 2 :

The molecular mass of solvent (g mol−1)

R :

The gas constant (J K−1 mol−1)

T :

The absolute temperature (K)

T m :

The absolute melting temperature of form I of PBL (K)

T mean :

The average absolute temperature (K)

u r :

The relative standard uncertainty

U :

The standard uncertainty

x i :

The mole fraction solubility of form I of PBL (mol mol−1)

x i exp :

The experimental solubility of form I of PBL (mol mol−1)

x i exp :

The calculated solubility by thermodynamic models (mol mol−1)

ζ H :

The relative contribution of enthalpy

ζ TS :

The relative contribution of entropy

fus H :

The fusion enthalpy of form I of PBL (kJ mol−1)

fus S :

The fusion entropy of form I of PBL (kJ mol−1)

diss :

The dissolution Gibbs free energy of real solution (kJ mol−1)

diss :

The dissolution enthalpy of solution (kJ mol−1)

diss :

The dissolution entropy of solution (J mol−1 K−1)

λ, h :

The parameters of the λh equation

References

  1. Feng H, Wang N, Huang X, Wang T, Zhou LA, Hao HX. Recent progress in melt crystallization. Chem Eng Res Des. 2023;190:268–81.

    Article  CAS  Google Scholar 

  2. Jia SZ, Gao ZG, Tian NN, Li ZQ, Gong JB, Wang JK, et al. Review of melt crystallization in the pharmaceutical field, toward crystal engineering and continuous process development. Chem Eng Res Des. 2021;166:268–80.

    Article  CAS  Google Scholar 

  3. Adamo A, Beingessner RL, Behnam M, Chen J, Jamison TF, Jensen KF, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science. 2016;352(6281):61–7.

    Article  CAS  PubMed  Google Scholar 

  4. Shekoofa O, Wang J. Fabrication of P-type microcrystalline silicon thin film by magnetron sputtering and copper induced crystallization. Electr Eng. 2018. https://doi.org/10.1109/ICEE.2018.8472708.

    Article  Google Scholar 

  5. Fujimura H, Komasaka T, Tomari T, Kitano Y, Takekawa K. Nanosuspension formulations of poorly water-soluble compounds for intravenous administration in exploratory toxicity studies: in vitro and in vivo evaluation. J Appl Toxicol. 2016;36(10):1259–67.

    Article  CAS  PubMed  Google Scholar 

  6. Li F, Li LS, Wang SN, Yang Y, Li J, Liu DC, et al. Improved dissolution and oral absorption by co-grinding active drug probucol and ternary stabilizers mixtures with planetary beads-milling method. Asian J Pharm Sci. 2019;14(6):649–57.

    Article  PubMed  Google Scholar 

  7. Wang W, Liu YN, Liu JM, Yin P, Wang LJ, Qi JL, et al. Mortality and years of life lost of cardiovascular diseases in China, 2005–2020: empirical evidence from national mortality surveillance system. Int J Cardio. 2021;340:105–12.

    Article  Google Scholar 

  8. Yan PK, Liao ZY, Yang YZ. Probucol reduces matrix metalloproteinase-9 secretion of THP-1 monocytederived macrophages induced by oxidized low density lipoprotein. Chin J Arterioscler. 2003;11(003):199–202.

    CAS  Google Scholar 

  9. Yi GY, Yang TS, Li YZ, Zhang HW. The hepatic effects of combination therapy of probucol and atorvastatin in spontaneously hypertensive rats with high lipids diet. Chin J Arterioscler. 2009;17(2):5.

    Google Scholar 

  10. Li G, Yin L, Liu T, Zheng X, Gang X, Xu Y, et al. Role of probucol in preventing contrast-induced acute kidney injury after coronary interventional procedure. Chin J Arterioscler. 2009;103(4):512–4.

    CAS  Google Scholar 

  11. Wen JH, Wang WX, Fang SQ, Lu HM, Huang LF, Lu GH. Hypolipidemic drug—probucol. Chin J New Drugs. 1998;7(1):7.

    Google Scholar 

  12. Gerber JJ, Caira MR, Lötter AP. Structures of two conformational polymorphs of the cholesterol-lowering drug probucol. J Crystallogr Spectrosc Res. 1993;23(11):863–9.

    Article  CAS  Google Scholar 

  13. Kawakami K, Ohba C. Crystallization of probucol from solution and the glassy state. Int J Pharm. 2017;517(1–2):322–8.

    Article  CAS  PubMed  Google Scholar 

  14. Renon H, Prausnitz JM. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968;14:135–44.

    Article  CAS  Google Scholar 

  15. Wu YC, Feng JW. Development and application of artificial neural network. Wirel Pers Commun. 2018;102(2):1645–56.

    Article  Google Scholar 

  16. Wang YQ, Li JY, Chen CH, Zhang J, Zhan ZH. Scale adaptive fitness evaluation-based particle swarm optimisation for hyperparameter and architecture optimisation in neural networks and deep learning. CAAI TRIT. 2023;8(3):849–62.

    CAS  Google Scholar 

  17. Zhang Y, Hu Y, Gao XZ, Gong DW, Guo YN, Gao KZ, et al. An embedded vertical-federated feature selection algorithm based on particle swarm optimisation. CAAI TRIT. 2023;8(3):734–54.

    Google Scholar 

  18. Xu SJ, Hou ZB, Chuai XY, Wang YF. Overview of secondary nucleation: from fundamentals to application. Ind Eng Chem Res. 2020;59(41):18335–56.

    Article  CAS  Google Scholar 

  19. Xu SJ, Zhang HM, Qiao BG, Wang YF. Insights into solvent-dependent nucleation behavior of benzoic acid from metastable zone widths. J Mol Liq. 2021. https://doi.org/10.1016/j.molliq.2021.117634.

    Article  Google Scholar 

  20. Apelblat A, Manzurola E. Solubilities of L-aspartic, DL-aspartic, DL-glutamic, p-hydroxybenzoic, o-anisic, p-anisic, and itaconic acids in water from T = 278 K to T = 345 K. J Chem Thermodyn. 1997;29(12):1527–33.

    Article  CAS  Google Scholar 

  21. Apelblat A, Manzurola E. Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic, and p-toluic acid, and magnesium DL-aspartate in water from T = (278 to 348) K. J Chem Thermodyn. 1999;31(1):85–91.

    Article  CAS  Google Scholar 

  22. Zhou G, Wang B, Ding L, Dong J, Wang F, Feng C. Measurement and correlation of the solubility of Lidocaine in eight pure and mixed solvents at temperatures from (292.15 to 332.15) K. J Mol Liq. 2017;242:168–74.

    Article  CAS  Google Scholar 

  23. Zhang H, Xu S, Zhang K, Wang Y. Temperature and solvent dependent thermodynamic behavior of sulfathiazole. J Mol Liq. 2021. https://doi.org/10.1016/j.molliq.2021.117146.

    Article  Google Scholar 

  24. Em A, Aa B (2002). Solubilities of l-glutamic acid, 3-nitrobenzoic acid, p-toluic acid, calcium-l-lactate, calcium gluconate, magnesium-dl-aspartate, and magnesium-l-lactate in water. J Chem Thermodyn. 40(5).

  25. Mullin JW. Crystallization. Place: Butterworth; 1993.

    Google Scholar 

  26. Acree WE. Comments concerning ‘model for solubility estimation in mixed solvent systems.’ Int J Pharm. 1996;127(1):27–30.

    Article  CAS  Google Scholar 

  27. Dha B, Xla B, Hwa B, Yan W, Sda B, Bo Y, et al. Determination and correlation of pyridoxine hydrochloride solubility in different binary mixtures at temperatures from (278.15 to 313.15)K. J Chem Thermodyn. 2016;94:138–51.

    Article  Google Scholar 

  28. Atkins P, De Paula J. Physical Chemistry 8th edition. 2006.

  29. Buchowski H, Ksiazczak A, Pietrzyk S. Solvent activity along a saturation line and solubility of hydrogen-bonding solids. J Phys Chem. 1980;84(9):975–9.

    Article  CAS  Google Scholar 

  30. Acree WE. Mathematical representation of thermodynamic properties: Part 2. Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich-Kister mathematical representation from a two-body and three-body interactional mixing model—ScienceDirect. Thermochim Acta. 1992;198(1):71–9.

    Article  CAS  Google Scholar 

  31. Spackman MA, Mckinnon JJ. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm. 2002;4(66):378–92.

    Article  CAS  Google Scholar 

  32. Mckinnon JJ, Spackman MA, Mitchell AS. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr B. 2004;6:60.

    Google Scholar 

  33. Mckinnon JJ, Jayatilaka D, Spackman MA. toward quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Comm. 2007;37:3814–6.

    Article  Google Scholar 

  34. Dee GT, Sauer BB. The surface tension of polymer liquids. Macromol Symp. 2015;139(1):115–23.

    Article  Google Scholar 

  35. Gu CH, Li H, Gandhi RB, Raghavan K. Grouping solvents by statistical analysis of solvent property parameters: implication to polymorph screening. Int J Pharm. 2004;283(1–2):117–25.

    Article  CAS  PubMed  Google Scholar 

  36. Parker AJ. The effects of solvation on the properties of anions in dipolar aprotic solvents. Chem Soc Rev. 1962;16(2):163–87.

    Article  CAS  Google Scholar 

  37. Sousa J, Almeida J, Ferreira A, Fachada HC, Fonseca I. Solubility of HFCs in lower alcohols. Fluid Phase Equilib. 2011;303(2):115–9.

    Article  CAS  Google Scholar 

  38. Perlovich GL, Kurkov SV, Kinchin AN, Bauer-Brandl A. Thermodynamics of solutions III: comparison of the solvation of (+)-naproxen with other NSAIDs. Eur J Pharm Biopharm. 2004;57(2):411–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support of the National Natural Science Foundation of China (Grant Nos. NNSFC 22178272 and NNSFC 22108204); National Key Research and Development Program of China (No. 2022YFC2904000); Training Program for Changjiang Scholars and Innovative Research Team in University ([2013] 373); Innovative Research Team of Tianjin Municipal Education Commission (TD13-5008) and Yangtze Scholars and Innovative Research Team in Chinese University (IRT-17R81).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shijie Xu or Yanfei Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wang, W., Li, J. et al. Insights into how carbon chain length and branch position of alcohol solvents affect solid–liquid thermodynamic behavior of form I of probucol. J Therm Anal Calorim 149, 2941–2952 (2024). https://doi.org/10.1007/s10973-024-12883-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12883-5

Keywords

Navigation