Skip to main content
Log in

Solubility of sinapic acid in various (Carbitol + water) systems: computational modeling and solution thermodynamics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The solubility and solution thermodynamic properties of a “bioactive nutraceutical” sinapic acid (SA) in different “2-(2-ethoxyethoxy)ethanol (Carbitol®) + water” mixtures were investigated. The “mole fraction solubilities (xe)” of SA in various “Carbitol + water” systems were determined at “T = 298.15–318.15 K” and “p = 0.1 MPa.” The measured xe values of SA were found well regressed by “Apelblat, van’t Hoff, Yalkowsky, Jouyban–Acree and Jouyban–Acree–van’t Hoff” models with mean percent deviations of < 4.0%. The maximum xe value of SA was recorded in pure Carbitol (4.15 × 10−2 at T = 318.15 K), and the minimum one was estimated in neat water (6.28 × 10−5 at T = 298.15 K). The regressed results were found to be in accordance with experimental results of SA. Using activity coefficients, mixing thermodynamic parameters of SA were determined. The results showed spontaneous dissolution of SA in most of the cosolvent mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

T :

Absolute temperature (K)

p :

Atmospheric pressure (MPa)

m :

Mass fraction of Carbitol in “Carbitol + water” mixtures

m 1 :

Mass of sinapic acid (g)

m 2 :

Mass of neat Carbitol (g)

m 3 :

Mass of neat water (g)

x e :

Experimental mole fraction solubility of sinapic acid

x idl :

Ideal solubility of sinapic acid in mole fraction

x van’t :

van’t Hoff model solubility of sinapic acid in mole fraction

x Apl :

Apelblat model solubility of sinapic acid in mole fraction

x Yal :

Yalkowsky model solubility of sinapic acid in mole fraction

x m,T :

Jouyban–Acree model solubility of sinapic acid in mole fraction

x 1 :

Mole fraction of sinapic acid in neat Carbitol

x 2 :

Mole fraction of neat Carbitol

x 3 :

Mole fraction of neat water

δ d :

Dispersion Hansen solubility parameter (MPa1/2)

δ p :

Polar Hansen solubility parameter (MPa1/2)

δ h :

Hydrogen-bonded Hansen solubility parameter (MPa1/2)

δ mix :

Hansen solubility parameter for “Carbitol + water” mixtures (MPa1/2)

α :

Volume fraction of Carbitol in “Carbitol + water” mixtures

δ 1 :

Hansen solubility parameter of neat Carbitol (MPa1/2)

δ 2 :

Hansen solubility parameter of neat water (MPa1/2)

γ i :

Activity coefficient of sinapic acid

R 2 :

Correlation coefficient

MPD:

Mean percent deviations (%)

a and b :

Parameters of van’t Hoff model

A, B and C :

Parameters of Apelblat model

J i :

Parameter of Jouyban–Acree model

A1, B1, A2 and B2 :

Parameter of Jouyban–Acree–van’t Hoff model

ΔmixGid :

Mixing Gibbs free energy for ideal solution (J mol−1)

ΔmixHid :

Mixing enthalpy for ideal solution (J mol−1)

ΔmixSid :

Mixing entropy for ideal solution (J mol−1 K−1)

ΔmixG :

Mixing Gibbs free energy for non-ideal solution (J mol−1)

ΔmixH :

Mixing enthalpy for non-ideal solution (J mol−1)

ΔmixS :

Mixing entropy for non-ideal solution (J mol−1 K−1)

G E :

Excess Gibbs free energy (J mol−1)

H E :

Excess enthalpy (J mol−1)

T fus :

Fusion temperature (K)

R :

Universal gas constant (J mol−1 K−1)

ΔHfus :

Molar fusion enthalpy (kJ mol−1)

ΔCp :

Difference in molar heat capacity (J mol−1 K−1)

References

  1. Niciforovic N, Abramovic H. Sinapic acid and its derivatives: natural sources and bioactivity. Compr Rev Food Sci Food Saf. 2014;13:34–51.

    CAS  Google Scholar 

  2. Shakeel F, Haq N, Raish M, Anwer MK, Al-Shdefat R. Solubility and thermodynamic analysis of sinapic acid in various neat solvents at different temperatures. J Mol Liq. 2016;222:167–71.

    CAS  Google Scholar 

  3. Silambarasan T, Manivannan J, Priya MK, Suganya N, Chatterjee S, Raja B. Sinapic acid protects heart against ischemia/reperfusion injury and H9c2 cardiomyoblast cells against oxidative stress. Biochem Biophys Res Commun. 2015;456:853–9.

    PubMed  CAS  Google Scholar 

  4. Natella F, Nardini M, Di Felice M, Scaccini C. Benzoic and cinnamic acid derivatives as antioxidants: structure–activity relation. J Agric Food Chem. 1999;47:1453–9.

    PubMed  CAS  Google Scholar 

  5. Nenadis N, Lazaridou O, Tsimidou MZ. Use of reference compounds in antioxidant activity assessment. J Agric Food Chem. 2007;55:5452–60.

    PubMed  CAS  Google Scholar 

  6. Robbins RJ. Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem. 2003;51:2866–87.

    PubMed  CAS  Google Scholar 

  7. Cuvelier ME, Richard H, Berset C. Comparison of the antioxidative activity of some acid-phenols: structure–activity relationship. Biosci Biotechnol Biochem. 1992;56:324–5.

    CAS  Google Scholar 

  8. Firuzi O, Giansanti L, Vento R, Seibert C, Petrucci R, Marrosu G, Agostino R, Saso L. Hypochlorite scavenging activity of hydroxycinnamic acids evaluated by a rapid microplate method based on the measurement of chloramines. J Pharm Pharmacol. 2003;55:1021–7.

    PubMed  CAS  Google Scholar 

  9. Shakeel F, Raish M, Anwer MK, Al-Shdefat R. Self-nanoemulsifying drug delivery system of sinapic acid: in vitro and in vivo evaluation. J Mol Liq. 2016;224:351–8.

    CAS  Google Scholar 

  10. Andreasen MF, Landbo AK, Christensen LP, Hansen A, Meyer AS. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins. J Agric Food Chem. 2001;49:4090–6.

    PubMed  CAS  Google Scholar 

  11. Lu C, Yao S, Lin N. Studies on reactions of oxidizing sulfur–sulfur three-electron-bond complexes and reducing alpha-amino radicals derived from OH reaction with methionine in aqueous solution. Biochim Biophys Acta. 2001;16:89–96.

    Google Scholar 

  12. Yun KJ, Koh DJ, Kim SH, Park SJ, Ryu JH, Kim DG, Lee JY, Lee KT. Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-κB inactivation. J Agric Food Chem. 2008;56:10265–1072.

    PubMed  Google Scholar 

  13. Nowak H, Kujava R, Zadernowski R, Roczniak B, Kozlowska H. Antioxidative and bactericidal properties of phenolic compounds in rapeseeds. Eur J Lipid Sci Technol. 1992;94:149–52.

    CAS  Google Scholar 

  14. Teixeira J, Gaspar A, Garrido EM, Garrido J, Borges F. Hydroxycinnamic acid antioxidants: an electrochemical overview. Biomed Res Int. 2013;2013:E251754.

    Google Scholar 

  15. Engels C, Schieber A, Ganzle MG. Sinapic acid derivatives in defatted oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DADESI-MSn and identification of compounds with antibacterial activity. Eur Food Res Technol. 2012;234:535–42.

    CAS  Google Scholar 

  16. Maddox CE, Laur LM, Tian L. Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa. Curr Microbiol. 2010;60:53–8.

    PubMed  CAS  Google Scholar 

  17. Tesaki S, Tanabe S, Ono H, Fukushi E, Kawabata J, Watanabe M. 4-Hydroxy-3-nitrophenyllactic and sinapic acids as antibacterial compounds from mustard seeds. Biosci Biotechnol Biochem. 1998;62:998–1000.

    PubMed  CAS  Google Scholar 

  18. Barber MS, McConnell VS, DeCaux BS. Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways. Phytochemistry. 2000;54:53–6.

    PubMed  CAS  Google Scholar 

  19. Johnson ML, Dahiya JP, Olkowski AA, Classen HL. The effect of dietary sinapic acid (4-hydroxy-3,5-dimethoxy-cinnamic acid) on gastrointestinal tract microbial fermentation, nutrient utilization, and egg quality in laying hens. Poult Sci. 2008;87:958–63.

    PubMed  CAS  Google Scholar 

  20. Yoon BH, Jung JW, Lee JJ, Cho YW, Jang CG, Jin C, Oh TH, Ryu JH. Anxiolytic-like effects of sinapic acid in mice. Life Sci. 2007;81:234–40.

    PubMed  CAS  Google Scholar 

  21. Roy SJ, Prince PSM. Protective effects of sinapic acid on cardiac hypertrophy, dyslipidaemia and altered electrocardiogram in isoproterenol-induced myocardial infarcted rats. Eur J Pharmacol. 2013;699:213–8.

    PubMed  CAS  Google Scholar 

  22. Silambarasan T, Manivannan J, Priya MK, Suganya N, Chatterjee S, Raja B. Sinapic acid prevents hypertension and cardiovascular remodeling in pharmacological model of nitric oxide inhibited rats. PLoS ONE. 2014;9:E115682.

    PubMed  PubMed Central  Google Scholar 

  23. Hudson EA, Dinh PA, Kokubun T, Simmonds MSJ, Gescher A. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol Biomark Prev. 2000;9:1163–70.

    CAS  Google Scholar 

  24. Ansari MA, Raish M, Ahmad A, Ahmad SF, Mudassar S, Mohsin K, Shakeel F. Sinapic acid mitigates gentamicin-induced nephrotoxicity and associated oxidative/nitrosative stress, apoptosis, and inflammation in rats. Life Sci. 2016;165:1–8.

    PubMed  CAS  Google Scholar 

  25. Sinha AS, Khandavilli UBR, Connor ELO, Deadman BJ, Maguire AR, Lawrence SE. Novel co-crystals of the nutraceutical sinapic acid. CrystEngComm. 2015;17:4832–41.

    CAS  Google Scholar 

  26. Shakeel F, Haq N, Salem-Bekhit MM. Thermodynamics of solubility of isatin in Carbitol + water mixed solvent systems at different temperatures. J Mol Liq. 2015;207:274–8.

    CAS  Google Scholar 

  27. Shakeel F, Haq N, Siddiqui NA, Alanazi FK, Alsarra IA. Solubility and thermodynamics of vanillin in Carbitol-water mixtures at different temperatures. LWT Food Sci Technol. 2015;64:1278–82.

    CAS  Google Scholar 

  28. Shakeel F, Haq N, Siddiqui NA, Alanazi FK, Alsarra IA. Thermodynamics of the solubility of reserpine in {2-(2-ethoxyethoxy)ethanol + water} mixed solvent systems at different temperatures. J Chem Thermodyn. 2015;82:57–60.

    Google Scholar 

  29. Shakeel F, Haq N, Salem-Bekhit MM, Raish M. Solubility and dissolution thermodynamics of sinapic acid in (DMSO + water) binary solvent mixtures at different temperatures. J Mol Liq. 2017;225:833–9.

    CAS  Google Scholar 

  30. Higuchi T, Connors KA. Phase-solubility techniques. Adv Anal Chem Inst. 1965;4:117–22.

    CAS  Google Scholar 

  31. El-Badry M, Haq N, Fetih G, Shakeel F. Measurement and correlation of tadalafil in five pure solvents at (298.15 to 333.15) K. J Chem Eng Data. 2014;59:839–43.

    CAS  Google Scholar 

  32. Shakeel F, Anwer MK. Dissolution thermodynamics and solubility of silymarin in PEG 400-water mixtures at different temperatures. Drug Dev Ind Pharm. 2015;41:1819–23.

    PubMed  CAS  Google Scholar 

  33. Zhu QN, Wang Q, Hu YB, Abliz X. Practical determination of the solubility parameters of 1-alkyl-3-methylimidazolium bromide ([CnC1im]Br, n = 5, 6, 7, 8) ionic liquids by inverse gas chromatography and the Hansen solubility parameter. Molecules. 2019;24:E1346.

    PubMed  Google Scholar 

  34. Alanazi A, Alshehri S, Altamimi M, Shakeel F. Solubility determination and three dimensional Hansen solubility parameters of gefitinib in different organic solvents: experimental and computational approaches. J Mol Liq. 2020;299:E112211.

    Google Scholar 

  35. Kalam MA, Alshamsan A, Alkholief M, Alsarra IA, Ali R, Haq N, Anwer MK, Shakeel F. Solubility measurement and various solubility parameters of glipizide in different neat solvents. ACS Omega. 2020;5:1708–16.

    PubMed  PubMed Central  Google Scholar 

  36. Wan Y, He H, Huang Z, Zhang P, Sha J, Li T, Ren B. Solubility, thermodynamic modeling and Hansen solubility parameter of 5-norbornene-2,3-dicarboximide in three binary solvents (methanol, ethanol, ethyl acetate + DMF) from 278.15 K to 323.15 K. J Mol Liq. 2020;300:E112097.

    Google Scholar 

  37. Apelblat A, Manzurola E. Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic and p-toluic acid and magnesium-DL-aspartate in water from T = (278–348) K. J Chem Thermodyn. 1999;31:85–91.

    CAS  Google Scholar 

  38. Manzurola E, Apelblat A. Solubilities of l-glutamic acid, 3-nitrobenzoic acid, acetylsalicylic, p-toluic acid, calcium-l-lactate, calcium gluconate, magnesium-dl-aspartate, and magnesium-l-lactate in water. J Chem Thermodyn. 2002;34:1127–36.

    CAS  Google Scholar 

  39. Yalkowsky SH, Roseman TJ. Solubilization of drugs by cosolvents. In: Yalkowsky SH, editor. Techniques of solubilization of drugs. New York: Marcel Dekker Inc; 1981. p. 91–134.

    Google Scholar 

  40. Sotomayor RG, Holguín AR, Romdhani A, Martínez F, Jouyban A. Solution thermodynamics of piroxicam in some ethanol + water mixtures and correlation with the Jouyban–Acree model. J Sol Chem. 2013;42:358–71.

    CAS  Google Scholar 

  41. Jouyban A. Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures. J Pharm Pharm Sci. 2008;11:32–58.

    PubMed  CAS  Google Scholar 

  42. Babaei M, Shayanfar A, Rahimpour E, Barzegar-Jalali M, Martínez F, Jouyban A. Solubility of bosentan in propylene glycol + water mixtures at various temperatures: experimental data and mathematical modeling. Phys Chem Liq. 2019;57:338–48.

    CAS  Google Scholar 

  43. Jouyban A, Chan HK, Chew NY, Khoubnasabiafari N, Acree WE Jr. Solubility prediction of paracetamol in binary and ternary solvent mixtures using Jouyban–Acree model. Chem Pharm Bull. 2006;54:428–31.

    CAS  Google Scholar 

  44. Jouyban A, Acree WE Jr. In silico prediction of drug solubility in water–ethanol mixtures using Jouyban–Acree model. J Pharm Pharm Sci. 2006;9:262–9.

    PubMed  CAS  Google Scholar 

  45. Khoubnasabjafari M, Shayanfar A, Martínez F, Acree WE Jr, Jouyban A. Generally trained models to predict solubility of drugs in carbitol + water mixtures at various temperatures. J Mol Liq. 2016;219:435–8.

    CAS  Google Scholar 

  46. Jouyban A, Fakhree MAA, Acree WE Jr. Comment on “Measurement and correlation of solubilities of (Z)-2-(2-aminothiazol-4-yl)-2-methoxyiminoacetic acid in different pure solvents and binary mixtures of water + (ethanol, methanol, or glycol)”. J Chem Eng Data. 2012;57:1344–6.

    CAS  Google Scholar 

  47. Jouyban-Gharamaleki A, Hanaee J. A novel method for improvement of predictability of the CNIBS/R-K equation. Int J Pharm. 1997;154:245–7.

    CAS  Google Scholar 

  48. Shakeel F, Haq N, Siddiqui NA. Thermodynamic solubility and solvation behavior of ferulic acid in different (PEG-400 + water) binary solvent mixtures. Drug Dev Ind Pharm. 2019;45:1468–76.

    PubMed  CAS  Google Scholar 

  49. Smith JM, Ness HCV, Abbott MM. Introduction to chemical engineering thermodynamics. New York: McGraw-Hill; 2001.

    Google Scholar 

  50. Li X, Cong Y, Du C, Zhao H. Solubility and solution thermodynamics of 2-methyl-4-nitroaniline in eleven organic solvents at elevated temperatures. J Chem Thermodyn. 2017;105:276–88.

    CAS  Google Scholar 

  51. Zhao K, Yang P, Du S, Li K, Li X, Li Z, Liu Y, Lin L, Hou B, Gong J. Determination and correlation of solubility and thermodynamics of mixing of 4-aminobutyric acid in mono-solvents and binary solvent mixtures. J Chem Thermodyn. 2016;102:276–86.

    CAS  Google Scholar 

  52. Vanderbilt BM, Clayton RE. Bonding of fibrous glass to elastomers. Ind Eng Chem Prod Res Dev. 1965;4:18–22.

    CAS  Google Scholar 

  53. Ruidiaz MA, Delgado DR, Martínez F, Marcus Y. Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures. Fluid Phase Equilib. 2010;299:259–65.

    CAS  Google Scholar 

  54. Manrique YJ, Pacheco DP, Martínez F. Thermodynamics of mixing and solvation of ibuprofen and naproxen in propylene glycol + water cosolvent mixtures. J Sol Chem. 2008;37:165–81.

    CAS  Google Scholar 

  55. Kalam MA, Alshehri S, Alshamsan A, Alkholief M, Ali R, Shakeel F. Solubility measurement, Hansen solubility parameters and solution thermodynamics of gemfibrozil in different pharmaceutically used solvents. Drug Dev Ind Pharm. 2019;45:1258–64.

    PubMed  CAS  Google Scholar 

  56. Hildebrand JH, Prausnitz JM, Scott RL. Regular and related solutions. New York: Van Nostrand Reinhold; 1970.

    Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group project number RG-1435-005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiyaz Shakeel.

Ethics declarations

Conflict of interest

The authors report no conflict of interest associated with this manuscript.

Data availability

All the data associated with this manuscript have been included in supplementary materials which can be found online.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakeel, F., Haq, N., Alanazi, F.K. et al. Solubility of sinapic acid in various (Carbitol + water) systems: computational modeling and solution thermodynamics. J Therm Anal Calorim 142, 1437–1446 (2020). https://doi.org/10.1007/s10973-020-09451-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09451-y

Keywords

Navigation