Skip to main content
Log in

Effect of temperature and composition on solubility and thermodynamics of salicylic acid in aqueous mixtures of betaine-based deep eutectic solvents

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Solubility of salicylic acid in binary mixtures of water and betaine/propylene glycol (Bet/PG, molar ratio of 1:5), betaine/ethylene glycol (Bet/EG, molar ratio of 1:3) or betaine/glycerol (Bet/Gly, molar ratio of 1:3) deep eutectic solvents (DESs) was investigated via the shake flask method at 293.15–313.15 K under atmospheric pressure (≈85 kPa). The results indicate that the solubility values are enhanced with mass fraction of each DES and temperature and DES containing PG is the best cosolvent. The Hansen solubility parameter (HSP) of salicylic acid, neat solvents of each DES and water was calculated and used to predict the solubility of drug in each neat solvent. The experimental solubility values were in good agreement with the ones predicted from HSPs. Three cosolvency models (Jouyban-Acree, Jouyban-Acree-van’t Hoff and the modified version of Jouyban-Acree-van’t Hoff) and two activity coefficient models (NRTL and UNIQUAC) were selected to correlate the solubility data. Based on the obtained percentage mean relative deviations (MRD%) for back-calculated data, all the investigated models show good correlation and validation. Additionally, investigation of the apparent thermodynamic analysis presented an endothermic and entropy-driven dissolution of salicylic acid in all cosolvent compositions including neat DESs and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Panahi Azar, A. Jouyban and F. Khonsari, J. Mol. Liq., 160, 14 (2011).

    Article  Google Scholar 

  2. Kirk-Othmer, Encyclopedia of chemical technology, Wiley, New York (1997).

    Google Scholar 

  3. United States Pharmacopeia, US Pharmaceutical Convention, Rockville, MD (2002).

  4. A. Jouyban, J. Pharm. Pharm. Sci., 11, 32 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. A. Jouyban, Handbook of solubility data for pharmaceuticals, CRC Press: Boca Raton, FL (2010).

    Google Scholar 

  6. F. J. Martínez, A. Jouyban and W. E. Acree Jr., Pharm. Sci., 23, 1 (2017).

    Article  Google Scholar 

  7. S. H. Yalkowsky, Solubility and solubilization in aqueous media, American Chemical Society and Oxford University Press, New York (1999).

    Google Scholar 

  8. M. E. Aulton, Pharmaceutics: The science of dosage forms design, 2nd ed., Churchill Livingstone, London (2002).

    Google Scholar 

  9. A. D. Khan and L. Singh, J. Drug Deliv. Therap., 6, 34 (2016).

    Google Scholar 

  10. V. Shukla and R. Scholar, J. Med. Pharm. Allied Sci., 1, 18 (2012).

    Google Scholar 

  11. P. Kolar, J. W. Shen, A. Tsuboi and T. Ishikawa, Fluid Phase Equilib., 194–197, 771 (2002).

    Article  Google Scholar 

  12. D. Singh, N. Bedi and A. K Tiwary, J. Pharm. Invest., 48, 509 (2018).

    Article  CAS  Google Scholar 

  13. J. Lim, S. Jang, H. K. Cho, M. S. Shin and H. Kim, J. Chem. Thermodyn., 57, 295 (2013).

    Article  CAS  Google Scholar 

  14. M. A. Fakhree, S. Ahmadian, V. Panahi-Azar, W. E. Acree Jr. and A. Jouyban, J. Chem. Eng. Data, 57, 3303 (2012).

    Article  CAS  Google Scholar 

  15. A. Shalmashi and A. Eliassi, J. Chem. Eng. Data, 53, 199 (2008).

    Article  CAS  Google Scholar 

  16. H. Matsuda, K. Kaburagi, S. Matsumoto, K. Kurihara, K. Tochigi and K. Tomono, J. Chem. Eng. Data, 54, 480 (2009).

    Article  CAS  Google Scholar 

  17. M. Sadeghi and A. C. Rasmuson, J. Chem. Eng. Data, 65, 4855 (2020).

    Article  CAS  Google Scholar 

  18. M. Barzegar-Jalali, P. Jafari and A. Jouyban, J. Mol. Liq., 349, 118199 (2021).

    Article  Google Scholar 

  19. E. L. Smith, A. P. Abbott and K. S. Ryder, Chem. Rev., 114, 11060 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Y. Marcus, Deep Eutectic Solvents, Springer Cham, Springer Nature Switzerland (2019).

    Book  Google Scholar 

  21. L. I. Tome, V. Baiao, W. da Silva and C. M. Brett, Appl. Mater. Today, 10, 30 (2018).

    Article  Google Scholar 

  22. Y. Dai, G. J. Witkamp, R. Verpoorte and Y. H. Choi, Food Chem., 187, 14 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. M. Moradi and A. Jouyban, J. Mol. Liq., 345, 117023 (2022).

    Article  CAS  Google Scholar 

  24. M. Barzegar-Jalali, P. Jafari and A. Jouyban, Fluid Phase Equilib., 560, 113508 (2022).

    Article  CAS  Google Scholar 

  25. S. Chanioti and C. Tzia, Innov. Food Sci. Emerg. Technol., 48, 228 (2018).

    Article  CAS  Google Scholar 

  26. C. R. Day and S. A. Kempson, Biochim. Biophys. Acta, 1860, 1098 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. M. Francisco, A. van den Bruinhorst and M. C. Kroon, Ang. Chemie Int. Ed., 52, 3074 (2013).

    Article  CAS  Google Scholar 

  28. Y. Dai, J. van Spronsen, G. J. Witkamp, R. Verpoorte and Y. H. Choi, Anal. Chim. Acta, 766, 61 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. B. Yang, Q. Zhang, Y. Fei, F. Zhou, P. Wang and Y. Deng, Green Chem., 17, 3798 (2015).

    Article  CAS  Google Scholar 

  30. T. Jelinski, M. Przybylek and P. Cysewski, Pharm. Res., 36, 116 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. S. Daneshjou, S. Khodaverdian, B. Dabirmanesh, F. Rahimi, S. Daneshjoo, F. Ghazi and K. Khajeh, J. Mol. Liq., 227, 21 (2017).

    Article  CAS  Google Scholar 

  32. K. Radosevic, I. Canak, M. Panic, K. Markov, M. C. Bubalo, J. Frece, V. G. Srcek and I. R. Redovnikovic, Environ. Sci. Pollut. Res. Int., 25, 14188 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. M. Hayyan, C. Y. Looi, A. Hayyan, W. F. Wong and M. A. Hashim, PLOS ONE, 10, e0117934 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. A. Jouyban and M. A. Fakhree, in Toxicity and drug testing, W. E. Acree Jr. (Ed.), Intech Co, New York (2012).

  35. A. Jouyban and W. E. Acree Jr., J. Mol. Liq., 256, 541 (2018).

    Article  CAS  Google Scholar 

  36. A. Fathi-Azarbayjani, M. Abbasi, J. Vaez-Gharamaleki and A. Jouyban, J. Mol. Liq., 215, 339 (2016).

    Article  CAS  Google Scholar 

  37. H. Ma, Y. Qu, Z. Zhou, S. Wang and L. Li, J. Chem. Eng. Data, 57, 2121 (2012).

    Article  CAS  Google Scholar 

  38. Q. Gao, P. Zhu, H. Zhao, A. Farajtabar, A. Jouyban and W. E. Acree Jr., J. Chem. Thermodyn., 161, 106517 (2021).

    Article  CAS  Google Scholar 

  39. C. C. Chen, H. I. Britt, J. F. Boston and L. B. Evans, AIChE J., 28, 588 (1982).

    Article  CAS  Google Scholar 

  40. D. S. Abrams and J. M. Prausnitz, AIChE J., 21, 116 (1975).

    Article  CAS  Google Scholar 

  41. G. Maurer and J. M. Prausnitz, Fluid Phase Equilib., 2, 91 (1978).

    Article  CAS  Google Scholar 

  42. M. Rogosic, A. Kristo and K. Z. Kucan, Braz. J. Chem. Eng., 36, 1703 (2021).

    Article  Google Scholar 

  43. A. Jouyban and M. A. Fakhree, Experimental, computational methods pertaining to drug solubility, Toxicity Drug Test (2012).

  44. H. Shekaari, M. T. Zafarani-Moattar and M. Mokhtarpour, Fluid Phase Equilib., 462, 100 (2018).

    Article  CAS  Google Scholar 

  45. D. Warminska, B. Nowosielski, A. Szewczyk, J. Ruszkowski and M. Prokopowicz, J. Mol. Liq., 323, 114834 (2021).

    Article  CAS  Google Scholar 

  46. P. B. Sanchez, B. Gonzalez, J. Salgado, J. Jose Parajo and A. Domínguez, J. Chem. Thermodyn., 131, 517 (2019).

    Article  CAS  Google Scholar 

  47. A. Jouyban, M. Khoubnasabjafari, H. K. Chan and W. E. Acree Jr., Pharmazie, 61, 789 (2006).

    CAS  PubMed  Google Scholar 

  48. A. Bondi, Physical properties of molecular crystals, liquids and glasses, Wiley, New York (1968).

    Google Scholar 

  49. J. M. Prausnitz, R. N. Richtenthaler and E. G. Azevedo, Molecular thermodynamics of fluid-phase equilibria, Upper Saddle River, New Jersey, Prentice-Hall (1999).

    Google Scholar 

  50. C. L. Yaws, X. M. Wang and M. A. Satyro, Solubility parameter, liquid volume, and Van Der Waals volume and area, In: Yaws CL, editor. Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic chemicals, New York, McGraw Hill (1999).

    Google Scholar 

  51. A. Fredenslund, R. L. Jones and J. M. Prausnitz, AIChE J., 21, 1086 (1975).

    Article  CAS  Google Scholar 

  52. E. S. Domalski and E. D. Hearing, J. Phys. Chem. Ref. Data, 3, 1 (1996).

    Article  Google Scholar 

  53. J. H. Hildebrand and R. L. Scott, Regular solutions, Prentice-Hall (1962).

  54. C. M. Hansen, Danish Technical: Copenhagen, 14 (1967).

  55. C. M. Hansen, A User’s Handbook, CRC Press (2002).

  56. D. W. Van Krevelen, edited by K. Te. Nijenhuis, Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, Elsevier (2009).

  57. H. Shekaari, M. T. Zafarani-Moattar and B. Mohammadi, J. Chem. Eng. Data, 64, 3904 (2019).

    Article  CAS  Google Scholar 

  58. S. Just, F. Sievert, M. Thommes and J. Breitkreutz, Eur. J. Pharm. Biopharm., 85, 1191 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. H. Shekaari, M. T. Zafarni-Moattar, M. Mokhtarpour and S. Faraji, Sci. Rep., 11, 24081 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. C. Cheng, Y. Cong, C. B. Du, J. Wang, G. B. Yao and H. K. Zhao, J. Chem. Thermodyn., 101, 372 (2016).

    Article  CAS  Google Scholar 

  61. N. J. Adel, M. Chokri and A. Arbi, J. Chem. Thermodyn., 55, 75 (2012).

    Article  Google Scholar 

  62. F. Martinez and A. Gomez, J. Sol. Chem., 30, 909 (2001).

    Article  CAS  Google Scholar 

  63. M. Aragon, J. E. Rosas and F. Martinez, Braz. J. Pharm. Sci., 46, 227 (2010).

    Article  CAS  Google Scholar 

  64. C. M. Avila and F. Martínez, J. Sol. Chem., 31, 975 (2002).

    Article  CAS  Google Scholar 

  65. F. L. Nordstro and A. C. Rasmuson, J. Chem. Eng. Data, 51, 1668 (2006).

    Article  Google Scholar 

  66. A. Li and S. H. Yalkowsky, Ind. Eng. Chem. Res., 37, 4470 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P. Jafari would like to thank for a post doctorate grant (64248) of Tabriz University of Medical Sciences (Iran) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolghasem Jouyban.

Additional information

CRediT Authorship Contribution Statement

Parisa Jafari: Formal analysis, Investigation, Writing original draft.

Mohammad Barzegar-Jalali: Writing — review & editing, Formal analysis, Funding acquisition.

Abolghasem Jouyban: Conceptualization, Writing — review & editing, Supervision.

Declaration of Competing Interest

The authors declare no conflict of interest.

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Electronic Supplementary Material

11814_2022_1284_MOESM1_ESM.pdf

Effect of temperature and composition on solubility and thermodynamics of salicylic acid in aqueous mixtures of betaine-based deep eutectic solvents

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, P., Barzegar-Jalali, M. & Jouyban, A. Effect of temperature and composition on solubility and thermodynamics of salicylic acid in aqueous mixtures of betaine-based deep eutectic solvents. Korean J. Chem. Eng. 40, 910–924 (2023). https://doi.org/10.1007/s11814-022-1284-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1284-z

Keywords

Navigation