Skip to main content
Log in

Study on sol–gel-modified ammonium polyphosphate and its application in the flame-retardant polyurethane composites

  • Original Paper: Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, organic–inorganic-modified ammonium polyphosphate (APP) flame retardant (FR) was prepared by a sol–gel method that used tetraethoxysilane and vinyltriethoxysilane as precursors. Then modified APP (VTSAPP) was added into polyurethane (PU) to fabricate the FR PU/VTSAPP composites. Crucially, the structure and performance of VTSAPP were systematically characterized. The results showed that a dense hybrid silica gel layer structure was formed on the surface of APP. Ideally, the limiting oxygen index (LOI) value of PU/20VTSAPP composite increased from 19.5% for pure PU to 30% and the vertical burning test (UL-94) reached up to V-0 level. Moreover, the addition of VTSAPP dramatically decreased the released smoke of PU during combustion compared to the counterpart of APP. The FR mechanism of VTSAPP was deeply explored. It is confidently shown that phosphorus and silicon compounds of VTSAPP contributed to the formation of a more continuous and compact char and improved the thermal stability of the char layer. The results of this study distinctly confirmed that VTSAPP was an effective FR agent for PU.

Highlights

  • The modified APP flame retardant was prepared by a sol–gel method that used TEOS and VTES as precursors.

  • The modified APP was added into the PU matrix to prepared flame-retardant PU composites.

  • The modified APP not only enhanced the flame retardancy of PU but also reduced the smoke emission.

  • The flame-retardant mechanism of modified APP in PU was deeply explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Cornille A, Auvergne R, Figovsky O, Boutevin B, Caillol S (2017) A perspective approach to sustainable routes for non-isocyanate polyurethanes. Eur Polym J 87:535–552. https://doi.org/10.1016/j.eurpolymj.2016.11.027

    Article  CAS  Google Scholar 

  2. Chattopadhyay DK, Raju KVSN (2007) Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci 32(3):352–418. https://doi.org/10.1016/j.progpolymsci.2006.05.003

    Article  CAS  Google Scholar 

  3. Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR (2016) Polyurethane types, synthesis and applications—a review. Rsc Adv 6(115):114453–114482. https://doi.org/10.1039/c6ra14525f

    Article  CAS  Google Scholar 

  4. Visakh PM, Semkin AO, Rezaev IA, Fateev AV (2019) Review on soft polyurethane flame retardant. Constr Build Mater 227. https://doi.org/10.1016/j.conbuildmat.2019.116673

  5. Huang SC, Deng C, Wang SX, Wei WC, Chen H, Wang YZ (2019) Electrostatic action induced interfacial accumulation of layered double hydroxides towards highly efficient flame retardance and mechanical enhancement of thermoplastic polyurethane/ammonium polyphosphate. Polym Degrad Stab 165:126–136. https://doi.org/10.1016/j.polymdegradstab.2019.05.006

    Article  CAS  Google Scholar 

  6. Liu LB, Xu Y, Li S, Xu MJ, He YT, Shi ZX, Li B (2019) A novel strategy for simultaneously improving the fire safety, water resistance and compatibility of thermoplastic polyurethane composites through the construction of biomimetic hydrophobic structure of intumescent flame retardant synergistic system. Compos B Eng 176. https://doi.org/10.1016/j.compositesb.2019.107218

  7. Yu SW, Xiao SJ, Zhao ZW, Huo XW, Wei JF (2019) Microencapsulated ammonium polyphosphate by polyurethane with segment of dipentaerythritol and its application in flame retardant polypropylene. Chin J Chem Eng 27(7):1735–1743. https://doi.org/10.1016/j.cjche.2019.04.023

    Article  CAS  Google Scholar 

  8. Zhang Y, Hu YX, Wang JL, Tian WX, Liew KM, Zhang Y, Wang BB (2018) Engineering carbon nanotubes wrapped ammonium polyphosphate for enhancing mechanical and flame retardant properties of poly(butylene succinate). Compos A Appl Sci Manuf 115:215–227. https://doi.org/10.1016/j.compositesa.2018.09.020

    Article  CAS  Google Scholar 

  9. Zhang S, Ji WF, Han Y, Gu XY, Li HF, Sun J (2018) Flame-retardant expandable polystyrene foams coated with ethanediol-modified melamine-formaldehyde resin and microencapsulated ammonium polyphosphate. J Appl Polym Sci 135(28). https://doi.org/10.1002/app.46471

  10. Li QM, Wang JY, Chen LM, Shi H, Hao JW (2019) Ammonium polyphosphate modified with beta-cyclodextrin crosslinking rigid polyurethane foam: enhancing thermal stability and suppressing flame spread. Polym Degrad Stab 161:166–174. https://doi.org/10.1016/j.polymdegradstab.2019.01.024

    Article  CAS  Google Scholar 

  11. Kim M, Ko H, Park SM (2019) Synergistic effects of amine-modified ammonium polyphosphate on curing behaviors and flame retardation properties of epoxy composites. Compos B Eng 170:19–30. https://doi.org/10.1016/j.compositesb.2019.04.016

    Article  CAS  Google Scholar 

  12. Qi C, Yuan B, Dong H, Li K, Shang S, Sun Y, Chen G, Zhan Y (2020) Supramolecular self‐assembly modification of ammonium polyphosphate and its flame retardant application in polypropylene. Polym Adv Technol 31(5):1099–1109. https://doi.org/10.1002/pat.4844

    Article  CAS  Google Scholar 

  13. Liu JC, Xu MJ, Lai T, Li B (2015) Effect of surface-modified ammonium polyphosphate with KH550 and SIlicon Resin on the Flame Retardancy, Water Resistance, Mechanical and Thermal Properties of Intumescent Flame Retardant Polypropylene. Ind Eng Chem Res 54(40):9733–9741. https://doi.org/10.1021/acs.iecr.5b01670

    Article  CAS  Google Scholar 

  14. Deng CL, Du SL, Zhao J, Shen ZQ, Deng C, Wang YZ (2014) An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance. Polym Degrad Stab 108:97–107. https://doi.org/10.1016/j.polymdegradstab.2014.06.008

    Article  CAS  Google Scholar 

  15. Li RM, Deng C, Deng CL, Dong LP, Di HW, Wang YZ (2015) An efficient method to improve simultaneously the water resistance, flame retardancy and mechanical properties of POE intumescent flame-retardant systems. RSC Adv 5(21):16328–16339. https://doi.org/10.1039/c4ra15971c

    Article  CAS  Google Scholar 

  16. Hoang DT, Schorr D, Landry V, Blanchet P, Vanslambrouck S, Dagenais C (2018) Preparation and characterisation of flame retardant encapsulated with functionalised silica-based shell. J Microencapsul 35(5):428–438. https://doi.org/10.1080/02652048.2018.1521477

    Article  CAS  Google Scholar 

  17. Gao WY, Qian XD, Wang SJ (2018) Preparation of hybrid silicon materials microcapsulated ammonium polyphosphate and its application in thermoplastic polyurethane. J Appl Polym Sci 135(4). https://doi.org/10.1002/app.45742

  18. Qu HQ, Wu WH, Hao JW, Wang CZ, Xu JZ (2014) Inorganic-organic hybrid coating-encapsulated ammonium polyphosphate and its flame retardancy and water resistance in epoxy resin. Fire Mater 38(3):312–322. https://doi.org/10.1002/fam.2182

    Article  CAS  Google Scholar 

  19. Ran GW, Liu XD, Guo J, Sun J, Li HF, Gu XY, Zhang S (2019) Improving the flame retardancy and water resistance of polylactic acid by introducing polyborosiloxane microencapsulated ammonium polyphosphate. Compos B Eng 173. https://doi.org/10.1016/j.compositesb.2019.04.033

  20. Chen YJ, Li LS, Qi XQ, Qian LJ (2019) The pyrolysis behaviors of phosphorus-containing organosilicon compound modified APP with different polyether segments and their flame retardant mechanism in polyurethane foam. Compos B Eng 173. https://doi.org/10.1016/j.compositesb.2019.04.045

  21. Chen YJ, Li LS, Xu LF, Qian LJ (2018) Phosphorus-containing silica gel-coated ammonium polyphosphate: preparation, characterization, and its effect on the flame retardancy of rigid polyurethane foam. J Appl Polym Sci 135(22). https://doi.org/10.1002/app.46334

  22. Ni JX, Chen LJ, Zhao KM, Hu Y, Song L (2011) Preparation of gel-silica/ammonium polyphosphate core-shell flame retardant and properties of polyurethane composites. Polym Adv Technol 22(12):1824–1831. https://doi.org/10.1002/pat.1679

    Article  CAS  Google Scholar 

  23. Qin ZL, Yang RJ, Zhang WC, Li DH, Jiao QJ (2019) Synergistic barrier effect of aluminum phosphate on flame retardant polypropylene based on ammonium polyphosphate/dipentaerythritol system. Mater Design 181. https://doi.org/10.1016/j.matdes.2019.107913

  24. Zhang Y, Wang BB, Sheng HB, Yuan BH, Yu B, Tang G, Jie GX, Feng H, Tao YJ, Hu Y (2016) Enhanced fire-retardancy of poly(ethylene vinyl acetate) electrical cable coatings containing microencapsulated ammonium polyphosphate as intumescent flame retardant. RSC Adv 6(88):85564–85573. https://doi.org/10.1039/c6ra15314c

    Article  CAS  Google Scholar 

  25. Qin ZL, Li DH, Zhang WC, Yang RJ (2015) Surface modification of ammonium polyphosphate with vinyltrimethoxysilane: Preparation, characterization, and its flame retardancy in polypropylene. Polym Degrad Stab 119:139–150. https://doi.org/10.1016/j.polymdegradstab.2015.05.012

    Article  CAS  Google Scholar 

  26. Yang AH, Deng C, Chen H, Wei YX, Wang YZ (2017) A novel Schiff-base polyphosphate ester: highly-efficient flame retardant for polyurethane elastomer. Polym Degrad Stab 144:70–82. https://doi.org/10.1016/j.polymdegradstab.2017.08.007

    Article  CAS  Google Scholar 

  27. Tan Y, Shao ZB, Chen XF, Long JW, Chen L, Wang YZ (2015) Novel multifunctional organic-inorganic hybrid curing agent with high flame-retardant efficiency for epoxy resin. ACS Appl Mater Inter 7(32):17919–17928. https://doi.org/10.1021/acsami.5b04570

    Article  CAS  Google Scholar 

  28. Yang W, Lu HD, Tai QL, Qiao ZH, Hu Y, Song L, Yuen RKK (2011) Flame retardancy mechanisms of poly(1,4-butylene terephthalate) containing microencapsulated ammonium polyphosphate and melamine cyanurate. Polym Adv Technol 22(12):2136–2144. https://doi.org/10.1002/pat.1735

    Article  CAS  Google Scholar 

  29. Matar M, Azambre B, Cochez M, Vahabi H, Fradet F (2016) Influence of modified mesoporous silica SBA-15 on the flammability of intumescent high-density polyethylene. Polym Adv Technol 27(10):1363–1375. https://doi.org/10.1002/pat.3805

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Zhejiang Sci-Tech University and Zhejiang Provincial Key Lab of Industrial Textile Materials & Manufacturing Tech for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Han.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, F., Zhao, Y., Meng, Y. et al. Study on sol–gel-modified ammonium polyphosphate and its application in the flame-retardant polyurethane composites. J Sol-Gel Sci Technol 98, 615–626 (2021). https://doi.org/10.1007/s10971-021-05526-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05526-w

Keywords

Navigation