Skip to main content

Advertisement

Log in

Influence of Core-Shell Structure and Cladding Sequence of Microencapsulated Ammonium Polyphosphate on the Flame-Resistant and Smoke Inhibition Efficiency for PBAT Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

To demonstrate the influence of core-shell structure of microencapsulated ammonium polyphosphate (MCAPPs) on the flame-resistant and smoke inhibition efficiency of polymer composites, four kinds of MCAPPs with unilaminar or bistratal shells were fabricated and used to fabricate flame retarded Poly (butyleneadipate-co-terephthalate) (PBAT) composites. The MCAPP with cross-linked β-cyclodextrin as outer layer (MFAPP-CD1) exhibited the highest flame-resistant efficiency. Accordingly, 75P/25MFAPP-CD1 showed the highest char residue and densest char layer, also the lowest pHRR and THR, decreasing by 77.4 and 76.9% compared with PBAT, respectively. Meanwhile, the lowest SPR and TSP also demonstrated its excellent smoke inhibition effect due to the weakened catalytic effect of Ammonium polyphosphate (APP) on carbonization agent. As a result, a LOI value (33.2%) and UL-94 V0 rating could be achieved. A reasonable core-shell structure could improve the carbon forming capacity and reduce the release of volatiles during combustion. Polyhydroxy carbonization agent should be designed as the outer layer of bistratal MCAPP.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen W, Liu P, Liu Y, Liu Z (2022) Recent advances in two-dimensional Ti3C2Tx MXene for flame retardant polymer materials. Chem Eng J. https://doi.org/10.1016/j.cej.2022.137239

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jian J, Zeng X, Huang X (2020) An overview on synthesis, properties and applications of poly (butylene-adipate-co-terephthalate)–PBAT. Adv Industrial Eng Polym Res 3(1):19–26. https://doi.org/10.1016/j.aiepr.2020.01.001

    Article  Google Scholar 

  3. Liu B, Zhao H, Wang Y (2021) Advanced flame-retardant methods for polymeric materials. Adv Mater. https://doi.org/10.1002/adma.202107905

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shi X, Li X, Li Y, Li Z, Wang D (2022) Flame-retardant strategy and mechanism of fiber reinforced polymeric composite: a review. Compos B. https://doi.org/10.1016/j.compositesb.2022.109663

    Article  Google Scholar 

  5. Shen Y, Gong W, Zheng B, Meng X, Gao L (2016) Synergistic effect of Ni-based bimetallic catalyst with intumescent flame retardant on flame retardancy and thermal stability of polypropylene. Polym Degrad Stab 129:114–124. https://doi.org/10.1016/j.polymdegradstab.2016.04.006

    Article  CAS  Google Scholar 

  6. Kundu C, Li Z, Song L, Hu Y (2020) An overview of fire retardant treatments for synthetic textiles: from traditional approaches to recent applications. Eur Polym J 137:109911. https://doi.org/10.1016/j.eurpolymj.2020.109911

    Article  CAS  Google Scholar 

  7. She T, Zhang S, Shi X (2021) Oxidized regenerated celluloses to fabricate high fire safety for epoxy resin with super expansion char layer. Cellulose 28(5):2995–3015. https://doi.org/10.1007/s10570-021-03723-y

    Article  CAS  Google Scholar 

  8. Du H, Ren J, Fu X, Zhang W, Yang R (2022) Simultaneous improvements of the fire safety, mechanical properties and water resistance of vinyl ester resin composites by introducing microencapsulated ammonium polyphosphate by polytriazole. Compos B 238:109908. https://doi.org/10.1016/j.compositesb.2022.109908

    Article  CAS  Google Scholar 

  9. Zhao X, Chen L, Li D, Feng T, He L, Wang X, Wang Y (2021) Biomimetic construction peanut-leaf structure on ammonium polyphosphate surface: improving its compatibility with poly (lactic acid) and flame-retardant efficiency simultaneously. Chem Eng J 412:128737. https://doi.org/10.1016/j.cej.2021.128737

    Article  CAS  Google Scholar 

  10. Tang G, Jiang H, Yang Y, Chen D, Liu C, Zhang P, Zhou L, Huang X, Zhang H, Liu X (2020) Preparation of melamine–formaldehyde resin-microencapsulated ammonium polyphosphate and its application in flame retardant rigid polyurethane foam composites. J Polym Res 27(12):1–14. https://doi.org/10.1007/s10965-020-02343-7

    Article  CAS  Google Scholar 

  11. Zhang B, Jiang Y, Han J (2017) The core-double-shell microcapsules flame retardant: synthesis and its application for polyvinyl chloride composites. J Phys Chem Solids 111:391–402. https://doi.org/10.1016/j.jpcs.2017.08.037

    Article  CAS  Google Scholar 

  12. Zhao K, Xu W, Song L, Wang B, Feng H, Hu Y (2012) Synergistic effects between boron phosphate and microencapsulated ammonium polyphosphate in flame-retardant thermoplastic polyurethane composites. Polym Advan Technol 23(5):894–900. https://doi.org/10.1002/pat.1985

    Article  CAS  Google Scholar 

  13. Decsov K, Bocz K, Szolnoki B, Bourbigot S, Fontaine G, Vadas D, Marosi G (2019) Development of bioepoxy resin microencapsulated ammonium-polyphosphate for flame retardancy of polylactic acid. Molecule 24(22):4123. https://doi.org/10.3390/molecules24224123

    Article  CAS  Google Scholar 

  14. Yang Y, Chen W, Liu M, Zhu Q, Liu X, Zhang B, Chen D, Liu X, Zhang K, Tang G (2021) Flame retarded rigid polyurethane foam composites based on gel-silica microencapsulated ammonium polyphosphate. J Sol-Gel Sci Technol 98(1):212–223. https://doi.org/10.1007/s10971-021-05484-3

    Article  CAS  Google Scholar 

  15. Wang B, Hong N, Shi Y, Wang B, Sheng H, Song L, Tang Q, Hu Y (2014) Comparative study on the effect of electron beam irradiation on the physical properties of ethylene-vinyl acetate copolymer composites. Radiat Phys Chem 97:284–291. https://doi.org/10.1016/j.radphyschem.2013.12.026

    Article  CAS  Google Scholar 

  16. Liu X, Sun J, Zhang S, Guo J, Tang W, Li H, Gu X (2019) Effects of carboxymethyl chitosan microencapsulated melamine polyphosphate on the flame retardancy and water resistance of thermoplastic polyurethane. Polym Degrad Stabil 160:168–176. https://doi.org/10.1016/j.polymdegradstab.2018.12.019

    Article  CAS  Google Scholar 

  17. Gao M, Chen S, Wang H, Chai Z (2018) Design, preparation, and application of a novel, microencapsulated, intumescent, flame-retardant-based mimicking mussel. ACS Omega 3(6):6888–6894. https://doi.org/10.1021/acsomega.8b00364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang B, Qian X, Shi Y, Yu B, Hong N, Song L, Hu Y (2015) Cyclodextrin microencapsulated ammonium polyphosphate: preparation and its performance on the thermal, flame retardancy and mechanical properties of ethylene vinyl acetate copolymer. Compos B 69:22–30. https://doi.org/10.1016/j.compositesb.2014.09.015

    Article  CAS  Google Scholar 

  19. Li Q, Wang J, Chen L, Shi H, Hao J (2019) Ammonium polyphosphate modified with β-cyclodextrin crosslinking rigid polyurethane foam: enhancing thermal stability and suppressing flame spread. Polym Degrad Stab 161:166–174. https://doi.org/10.1016/j.polymdegradstab.2019.01.024

    Article  CAS  Google Scholar 

  20. Liao S, Deng C, Huang S, Cao J, Wang Y (2016) An efficient halogen-free flame retardant for polyethylene: piperazinemodified ammonium polyphosphates with different structures. Chin J Polym Sci 34(11):1339–1353. https://doi.org/10.1007/s10118-016-1855-8

    Article  CAS  Google Scholar 

  21. Wang N, Mi L, Wu Y, Zhang J, Fang Q (2014) Double-layered co-microencapsulated ammonium polyphosphate and mesoporous MCM-41 in intumescent flame-retardant natural rubber composites. J Therm Anal Calorim 115(2):1173–1181. https://doi.org/10.1007/s10973-013-3404-9

    Article  CAS  Google Scholar 

  22. Wang W, Peng Y, Chen H, Gao Q, Li J, Zhang W (2017) Surface microencapsulated ammonium polyphosphate with beta-cyclodextrin and its application in wood‐flour/polypropylene composites. Polym Compos 38(10):2312–2320. https://doi.org/10.1002/pc.23813

    Article  CAS  Google Scholar 

  23. Zheng Z, Liu S, Wang B, Yang T, Cui X, Wang H (2015) Preparation of a novel phosphorus-and nitrogen‐containing flame retardant and its synergistic effect in the intumescent flame‐retarding polypropylene system. Polym Compos 36(9):1606–1619. https://doi.org/10.1002/pc.23069

    Article  CAS  Google Scholar 

  24. Jin X, Sun J, Zhang J, Gu X, Bourbigot S, Li H, Tang W, Zhang S (2017) Preparation of a novel intumescent flame retardant based on supramolecular interactions and its application in polyamide 11. ACS Appl Mater Inter 9(29):24964–24975. https://doi.org/10.1021/acsami.7b06250

    Article  CAS  Google Scholar 

  25. Shang S, Yuan B, Sun Y, Chen G, Huang C, Yu B, He S, Dai H, Chen X (2019) Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology. J Colloid Interf Sci 553:364–371. https://doi.org/10.1016/j.jcis.2019.06.015

    Article  CAS  Google Scholar 

  26. Ran G, Liu X, Guo J, Sun J, Li H, Gu X, Zhang S (2019) Improving the flame retardancy and water resistance of polylactic acid by introducing polyborosiloxane microencapsulated ammonium polyphosphate. Compos B Eng 173:106772. https://doi.org/10.1016/j.compositesb.2019.04.033

    Article  CAS  Google Scholar 

  27. Mu X, Zhan J, Feng X, Yuan B, Qiu S, Song L, Hu Y (2017) Novel melamine/o-phthalaldehyde covalent organic frameworks nanosheets: enhancement flame retardant and mechanical performances of thermoplastic polyurethanes. ACS Appl Mater Inter 9(27):23017–23026. https://doi.org/10.1021/acsami.7b06422

    Article  CAS  Google Scholar 

  28. Xing W, Yuan H, Zhang P, Yang H, Song L, Hu Y (2013) Functionalized lignin for halogen-free flame retardant rigid polyurethane foam: preparation, thermal stability, fire performance and mechanical properties. J Polym Res 20(9):1–12. https://doi.org/10.1007/s10965-013-0234-1

    Article  CAS  Google Scholar 

  29. Sun Q, Ding Y, Stoliarov S, Sun J, Fontaine G, Bourbigot S (2020) Development of a pyrolysis model for an intumescent flame retardant system: poly (lactic acid) blended with melamine and ammonium polyphosphate. Compos B 194:108055. https://doi.org/10.1016/j.compositesb.2020.108055

    Article  CAS  Google Scholar 

  30. Sadezky A, Muckenhuber H, Grothe H, Niessnera R, Pöschla U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43(8):1731–1742. https://doi.org/10.1016/j.carbon.2005.02.018

    Article  CAS  Google Scholar 

  31. Liu S, Cheng X, He Z, Liu J, Zhang X, Xu J, Lei C (2020) Amine-terminated highly cross-linked polyphosphazene-functionalized carbon nanotube-reinforced lignin-based electrospun carbon nanofibers. ACS Sustain Chem Eng 8(4):1840–1849. https://doi.org/10.1021/acssuschemeng.9b05940

    Article  CAS  Google Scholar 

  32. Chen M, Wang X, Li X, Liu X, Zhong L, Wang H, Liu Z (2017) The synergistic effect of cuprous oxide on an intumescent flame-retardant epoxy resin system. RSC Adv 7(57):35619–35628. https://doi.org/10.1039/C7RA05482C

    Article  CAS  Google Scholar 

  33. Yu P, Wang Z, Lai P, Zhang P, Wang J (2019) Evaluation of mechanic damping properties of montmorillonite/organo-modified montmorillonite-reinforced cement paste. Constr Build Mater 203:356–365. https://doi.org/10.1016/j.conbuildmat.2019.01.110

    Article  CAS  Google Scholar 

  34. Chen Y, Zhan J, Zhang P, Nie S, Lu H, Song L, Hu Y (2010) Preparation of intumescent flame retardant poly(butylene succinate) using fumed silica as synergistic agent. Ind Eng Chem Res 49(17):8200–8208. https://doi.org/10.1021/ie100989j

    Article  CAS  Google Scholar 

  35. Huang C, Yuan B, Zhang H, Zhao Q, Li P, Chen X, Yun Y, Chen G, Feng M, Li Y (2021) Investigation on thermokinetic suppression of ammonium polyphosphate on sucrose dust deflagration: based on flame propagation, thermal decomposition and residue analysis. J Hazard Mater 403:123653. https://doi.org/10.1016/j.jhazmat.2020.123653

    Article  CAS  PubMed  Google Scholar 

  36. Hu C, Bourbigot S, Delaunay T, Collinet M, Marcille S, Fontaine G (2020) Poly(isosorbide carbonate): a ‘green’ char forming agent in polybutylene succinate intumescent formulation. Compos Part B-Eng 184:107675. https://doi.org/10.1016/j.compositesb.2019.107675

    Article  CAS  Google Scholar 

  37. Wang Y, Liu L, Ma L, Yuan J, Wang L, Wang H, Xiao F, Zhu Z (2022) Transparent, flame retardant, mechanically strengthened and low dielectric EP composites enabled by a reactive bio-based P/N flame retardant. Polym Degrad Stab 204:110106. https://doi.org/10.1016/j.polymdegradstab.2022.110106

    Article  CAS  Google Scholar 

  38. Pappalardo S, Russo P, Acierno D, Rabe S, Schartel B (2016) The synergistic effect of organically modified sepiolite in intumescent flame retardant polypropylene. Eur Polym J 76:196–192. https://doi.org/10.1016/j.eurpolymj.2016.01.041

    Article  CAS  Google Scholar 

  39. Wang Y, Yuan J, Ma L, Yin X, Zhu Z, Song P (2022) Fabrication of anti-dripping and flame-retardant polylactide modified with chitosan derivative/aluminum hypophosphite. Carbohydr Polym 298:120141. https://doi.org/10.1016/j.carbpol.2022.120141

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are grateful for financial supports from the Foundation of Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University (No. 2021KF30), National Natural Science Foundations of China (No. 22208069 and 51603118) and the Key Research & Development Project of Shaanxi Province (No. 2019GY-195).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SZ, YX and LM. The first draft of the manuscript was written by SZ and XY. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ling Meng.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, X., Zhang, S., Xu, Y. et al. Influence of Core-Shell Structure and Cladding Sequence of Microencapsulated Ammonium Polyphosphate on the Flame-Resistant and Smoke Inhibition Efficiency for PBAT Composites. J Polym Environ 31, 4752–4769 (2023). https://doi.org/10.1007/s10924-023-02917-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02917-8

Keywords

Navigation