Skip to main content
Log in

In search of the most thermostable 1,1,1-trinitrocompounds: polynitroethyl-substituted sym-tetrazine and bistriazolotetrazine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In search of the most thermally stable 1,1,1-trinitrocompounds, several well-known and new energetic 1,2,4,5-tetrazines have been synthesized. The thermal stability of obtained compounds has been investigated by the methods of isothermal and non-isothermal kinetics. The introduction of the OCH2 or NHCH2 bridge between the heterocycle and the trinitromethyl moiety has been confirmed to result in a significant increase in thermal stability. An increase in stability is accompanied by a decrease in the C–NO2 bond length by 0.025–0.029 Å. An additional increase in the thermal stability of 1.1,1-trinitro derivatives is possible due to the creation of high-melting compounds, the decomposition of which proceeds before melting. Trinitroethylamine derivatives are most preferred due to the strong hydrogen bonds of the NH group. However, in some cases, the actual stability of a substance is reduced by the appearance of autocatalysis. On the basis of experimental data of manometry, analysis of condensed decomposition products by HPLC and IR spectroscopy, a mechanism for the decomposition of 1,1,1-trinitrocompounds was proposed. The compounds studied were found to have favorable detonation properties, which were close to those of RDX, a commonly used explosive. At the same time, some of the obtained polynitro compounds have increased burning rates in comparison with the known nitramines HMX and RDX.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Scheme 3
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 4
Scheme 5
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD. A review of energetic materials synthesis. Thermochim Acta. 2002;384(1–2):187–204. https://doi.org/10.1016/S0040-6031(01)00805-X.

    Article  CAS  Google Scholar 

  2. Chavez DE, Parrish DA, Mitchell L. Energetic trinitro- and fluorodinitroethyl ethers of 1,2,4,5-tetrazines. Angew Chem Int Ed Engl. 2016;55(30):8666–9. https://doi.org/10.1002/anie.201604115.

    Article  CAS  PubMed  Google Scholar 

  3. Tang Y, Kumar D, Shreeve JNM. Balancing excellent performance and high thermal stability in a dinitropyrazole fused 1,2,3,4-tetrazine. J Am Chem Soc. 2017;139(39):13684–7. https://doi.org/10.1021/jacs.7b08789.

    Article  CAS  PubMed  Google Scholar 

  4. Sinditskii VP, Egorshev VY, Rudakov GF, Filatov SA, Burzhava AV. High-nitrogen energetic materials of 1,2,4,5-tetrazine family: thermal and combustion behaviors. In: DeLuca L, Shimada T, Sinditskii VP, Calabro M, editors. Chemical rocket propulsion. Springer: Cham; 2017. p. 89–125. https://doi.org/10.1007/978-3-319-27748-6_3.

    Chapter  Google Scholar 

  5. Gao H, Zhang Q, Shreeve JNM. Fused heterocycle-based energetic materials (2012–2019). J Mater Chem A. 2020;8(8):4193–216. https://doi.org/10.1039/C9TA12704F.

    Article  CAS  Google Scholar 

  6. Fershtat LL. Recent advances in the synthesis and performance of 1,2,4,5-tetrazine-based energetic materials. FirePhysChem. 2023;3(1):78–87. https://doi.org/10.1016/j.fpc.2022.09.005.

    Article  Google Scholar 

  7. Sinditskii VP, Burzhava AV, Usuntsinova AV, Egorshev VY, Palysaeva NV, Suponitsky KY, Ananiev IV, Sheremetev AB. Increasing the burning rate through energetic compound tuning: hybrids of the furazan and [1,2,4] triazolo [4,3-b][1,2,4,5]tetrazine ring systems. Combust Flame. 2020;213:343–56. https://doi.org/10.1016/j.combustflame.2019.12.006.

    Article  ADS  CAS  Google Scholar 

  8. Zhou J, Zhang J, Wang B, Qiu L, Xu R, Sheremetev AB. Recent synthetic efforts towards high energy density materials: How to design high-performance energetic structures? FirePhysChem. 2022;2(2):83–139. https://doi.org/10.1016/j.fpc.2021.09.005.

    Article  Google Scholar 

  9. Kettner MA, Klapötke TM. Synthesis of new oxidizers for potential use in chemical rocket propulsion. In: DeLuca L, Shimada T, Sinditskii VP, Calabro M, editors. Chemical rocket propulsion. Springer: Cham; 2017. p. 63–88. https://doi.org/10.1007/978-3-319-27748-6_2.

    Chapter  Google Scholar 

  10. Manelis GB, Nazin GM, Rubtsov YI, Strunin VA. Thermal decomposition and combustion of explosives and propellants. London: Taylor & Francis; 2003.

    Book  Google Scholar 

  11. Nedel’ko VV, Zakharov VV, Korsounskii BL, Larikova TS, Chukanov NV, Shastin AV. Thermal decomposition of 2,4-diazido-6-trinitromethyl-1,3,5-triazine, 2,4-dimethoxy-6-trinitromethyl-1,3,5-triazine, and 2,4-diazido-6-methoxy-1,3,5-triazine. Russ J Phys Chem B. 2015;9(6):885–9. https://doi.org/10.1134/S1990793115060172.

    Article  CAS  Google Scholar 

  12. Yu Q, Yin P, Zhang J, He C, Imler GH, Parrish DA, Shreeve JM. Pushing the limits of oxygen balance in 1,3,4-oxadiazoles. J Am Chem Soc. 2017;139:8816–9. https://doi.org/10.1021/jacs.7b05158.

    Article  CAS  PubMed  Google Scholar 

  13. Chen P, Dou H, He C, Pang S. Boosting the energetic performance of trinitromethyl-1,2,4-oxadiazole moiety by increasing nitrogen-oxygen in the bridge. Int J Mol Sci. 2022;23(17):10002. https://doi.org/10.3390/ijms231710002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chinnam AK, Staples RJ, Shreeve JM. 1,2-Bis(5-(trinitromethyl)-1,2,4-oxadiazol-3-yl)diazene: a water stable, high-performing green oxidizer. Dalton Trans. 2021;50:16929–32. https://doi.org/10.1039/D1DT03496K.

    Article  CAS  PubMed  Google Scholar 

  15. Sheremetev AB, Korolev VL, Potemkin AA, Aleksandrova NS, Palysaeva NV, Hoang TH, Sinditskii VP, Suponitsky KY. Oxygen-rich 1,2,4-triazolo[3,4-d]-1,2,4-triazolo[3,4-f]furazano[3,4-b]pyrazines as energetic materials. Asian J Org Chem. 2016;5:1388–97. https://doi.org/10.1002/ajoc.201600386.

    Article  CAS  Google Scholar 

  16. Thottempudi V, Gao H, Shreeve JM. Trinitromethyl-substituted 5-nitro- or 3-azo-1,2,4-triazoles: synthesis, characterization, and energetic properties. J Am Chem Soc. 2011;133:6464–71. https://doi.org/10.1021/ja2013455.

    Article  CAS  PubMed  Google Scholar 

  17. Serushkin VV, Sinditskii VP, Hoang TH, Filatov SA, Shipulina AS, Dalinger IL, Shakhnes AK, Sheremetev AB. Thermal and combustion behavior of novel oxygen-rich energetic pyrazoles. J Therm Anal Calorim. 2018;132(1):127–42. https://doi.org/10.1007/s10973-017-6911-2.

    Article  CAS  Google Scholar 

  18. Chavez DE, Parrish DA, Mitchell L. Energetic trinitro- and fluorodinitroethyl ethers of 1,2,4,5-tetrazines. Angew Chem Int Ed. 2016;55(30):8666–9. https://doi.org/10.1002/anie.201604115.

    Article  CAS  Google Scholar 

  19. Rudakov GF, Kalinichenko AI, Nguyen TQ, Zinchenko SS, Cherkaev GV, Fedyanin IV, Sinditskii VP. Monosubstituted polynitroalkoxy-1,2,4,5-tetrazines: a new family of melt-castable energetic materials. Propellants Explos Pyrotech. 2021;47(3): e202100262. https://doi.org/10.1002/prep.202100262.

    Article  CAS  Google Scholar 

  20. Su T, Guo T, Cai C. The synthesis and properties of 3,3′-bis (trinitroethylamino)-4,4′-bisfurazan (BTNEABF): a potential energetic material. J Energy Mater. 2020;38(4):386–94. https://doi.org/10.1080/07370652.2019.1702740.

    Article  CAS  Google Scholar 

  21. Göbel M, Klapötke TM. Development and testing of energetic materials: the concept of high densities based on the trinitroethyl functionality. Adv Funct Mater. 2009;19(3):347–65. https://doi.org/10.1002/adfm.200801389.

    Article  CAS  Google Scholar 

  22. Rudakov GF, Sinditskii VP, Andreeva IA, Botnikova AI, Veselkina PR, Kostanyan SK, Yudin NV, Serushkin VV, Cherkaev GV, Dorofeeva OV. Energetic compounds based on a new fused bis [1,2,4]triazolo[1,5-b;5′,1′-f]-1,2,4,5-tetrazine. J Chem Eng. 2022;450(Part 3):138073. https://doi.org/10.1016/j.cej.2022.138073.

    Article  CAS  Google Scholar 

  23. Chavez DE, Hiskey MA. 1,2,4,5-Tetrazine based energetic materials. J Energetic Mater. 1999;17(4):357–77. https://doi.org/10.1080/07370659908201796.

    Article  ADS  CAS  Google Scholar 

  24. Feuer H, Kucera TJ. Preparation of 2,2,2-trinitroethanol. J Org Chem. 1960;25(11):2069–70. https://doi.org/10.1021/jo01081a629.

    Article  CAS  Google Scholar 

  25. Klapötke TM, Krumm B, Moll R. Polynitroethyl- and fluorodinitroethyl substituted boron esters. Chem Eur J. 2013;19(36):12113–23.

    Article  PubMed  Google Scholar 

  26. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6. https://doi.org/10.1021/ac60131a045.

    Article  CAS  Google Scholar 

  27. Rezchikova KI, Solkan VN, Kuznetsov SL. Quantum-chemical calculations by the MNDO method of the pre-exponential factor for the homolytic decomposition of aliphatic nitro and α-fluoronitro compounds in the gas phase. Bull Acad Sci USSR Div Chem Sci. 1990;39:283–6. https://doi.org/10.1007/BF00960653.

    Article  Google Scholar 

  28. Sinditskii VP, Smirnova AD, Vu TQ, Filatov SA, Serushkin VV, Rudakov GF. Thermal decomposition of 1,3,5,5-tetranitrohexahydropyrimidine: a new type of autocatalysis that persists at high temperatures. Propellants Explos Pyrotech. 2021;46(1):150–8. https://doi.org/10.1002/prep.202000259.

    Article  CAS  Google Scholar 

  29. Emanuel NM, Knorre DG. Course of chemical kinetics: textbook. 4th ed. Moscow: Higher School; 1984.

    Google Scholar 

  30. Korepin AG, Glushakova NM, Lempert DB, Kazakov AI, Shilov GV, Korchagin DV, Volokhov VM, Amosova ES, Aldoshin SM. 3,6-Bis (2,2,2-trinitroethylnitramino)-1,2,4,5-tetrazine. Structure and energy abilities as a component of solid composite propellants. Def Technol. 2022;18(7):1148–55. https://doi.org/10.1016/j.dt.2021.06.002.

    Article  Google Scholar 

  31. Astakhov AM, Vasil’ev AD, Molokeev MS, Revenko VA, Stepanov RS. Nitroimines: II. Structure of nitroamino-1,2,4-triazoles. Russ J Org Chem. 2005;41:910–5. https://doi.org/10.1007/s11178-005-0265-0.

    Article  CAS  Google Scholar 

  32. Korolev VL, Petukhova TV, Bakhmatova EA, Pivina TS, Sheremetev AB. Molecular modeling of the mechanisms of thermolysis of nitramino-1,2,4-triazoles. Chem Heterocycl Compd. 2006;42:1267–90. https://doi.org/10.1007/s10593-006-0236-6.

    Article  CAS  Google Scholar 

  33. Li S, Zhang W, Wang Y, Zhao X, Zhang L, Pang S. 2,4,6-Tris(2,2,2-trinitroethylamino)-1,3,5-triazine: synthesis, characterization, and energetic properties. J Energy Mater. 2014;32:S33–40. https://doi.org/10.1080/07370652.2013.820232.

    Article  ADS  Google Scholar 

  34. Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria, 4 revised ed., United Nations, ST/SG/AC.10/11/Rev. 4, United Nations, New York and Geneva, 2003.

  35. Sinditskii VP, Yudin NV, Fedorchenko SI, Egorshev VY, Kostin NA, Gezalyan LV, Zhang JG. Thermal decomposition behavior of CL-20 co-crystals. Thermochim Acta. 2020;691: 178703. https://doi.org/10.1016/j.tca.2020.178703.

    Article  CAS  Google Scholar 

  36. Zhao L, Yin Y, Sui H, Yu Q, Sun S, Zhang H, Wang S, Chen L, Sun J. Kinetic model of thermal decomposition of CL-20/HMX co-crystal for thermal safety prediction. Thermochim Acta. 2019;674:44–51. https://doi.org/10.1016/j.tca.2019.02.001.

    Article  CAS  Google Scholar 

  37. Dalinger IL, Vatsadze IA, Shkineva TK, Kormanov AV, Struchkova MI, Suponitsky KY, Bragin AA, Monogarov KA, Sinditskii VP, Sheremetev AB. Novel highly energetic pyrazoles: N-trinitromethyl-substituted nitropyrazoles. Chem Asian J. 2015;10(9):1987–96. https://doi.org/10.1002/asia.201500533.

    Article  CAS  PubMed  Google Scholar 

  38. Sinditskii VP, Egorshev VY, Berezin MV. Combustion of energetic cyclic nitramines. Zh Khim Fizika. 2003;22(4):53–60 (in Russian).

    Google Scholar 

  39. Stepanov RS, Kruglyakova LA, Astakhov AM. Effect of the structure of cyclic N-nitramines on the rate and mechanism of their thermolysis. Russ J Gen Chem. 2007;77:1293–9. https://doi.org/10.1134/S1070363207070237.

    Article  CAS  Google Scholar 

  40. Nazin GM, Prokudin VG, Dubikhin VV, Aliev ZG, Zbarskii VL, Yudin NV, Shastin AV. Relation between the N–NO2 bond length and stability of the secondary nitramines. Russ J Gen Chem. 2013;83:1071–6. https://doi.org/10.1134/S107036321306011X.

    Article  CAS  Google Scholar 

  41. Sinditskii VP, Smirnova AD, Serushkin VV, Aleksandrova NS, Sheremetev AB. Furazan-fused azacyclic nitramines: Influence of structural features on the combustion and the thermolysis. ChemistrySelect. 2020;5(44):13868–77. https://doi.org/10.1002/slct.202004081.

    Article  CAS  Google Scholar 

  42. Li H, Zhang L, Petrutik N, Wang K, Ma Q, Shem-Tov D, Zhao FQ, Gozin M. Molecular and crystal features of thermostable energetic materials: guidelines for architecture of “bridged” compounds. ACS Cent Sci. 2019;6(1):54–75. https://doi.org/10.1021/acscentsci.9b01096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun CH, Zhao XQ, Li YC, Pang SP. Synthesis of two new cage molecules containing trinitromethyl group. Chin Chem Lett. 2010;21(5):572–5. https://doi.org/10.1016/j.cclet.2009.12.001.

    Article  CAS  Google Scholar 

  44. Lukyanov OA, Shlykova NI. N-(2,2,2-trinitroethyl)-N-polynitrohexaazaisowurtzitanes. Russ Chem Bull. 2016;65:748–50. https://doi.org/10.1007/s11172-016-1367-2.

    Article  CAS  Google Scholar 

  45. Zhang Y, Li Y, Hu J, Xu C, Chen S, Ge Z, Sun C, Pang S. Energetic properties, thermal behavior and thermal safety of 4-(2,2,2-trinitroethyl)-2,6,8,10,12-pentanitro-2,4,6,8,10,12-hexaazaisowurtzitane. J Anal Appl Pyrolysis. 2020;152: 104924. https://doi.org/10.1016/j.jaap.2020.104924.

    Article  CAS  Google Scholar 

  46. Keller A, Stark D, Fierz H, Heinzle E, Hungerbühler K. Estimation of the time to maximum rate using dynamic DSC experiments. J Loss Prev Process Ind. 1997;10(1):31–41. https://doi.org/10.1016/S0950-4230(96)00037-X.

    Article  Google Scholar 

  47. Roduit B, Folly P, Sarbach A, et al. Estimation of time to maximum rate under adiabatic conditions (TMRad) using kinetic parameters derived from DSC-investigation of thermal behavior of 3-methyl-4-nitrophenol. Chem Propel Polym Mater. 2011;1:84–93.

    Google Scholar 

  48. Westwell MS, Searle MS, Wales DJ, Williams DH. Empirical correlations between thermodynamic properties and intermolecular forces. J Am Chem Soc. 1995;117(18):5013–5. https://doi.org/10.1021/ja00123a001.

    Article  CAS  Google Scholar 

  49. Suntsova MA, Dorofeeva OV. Prediction of enthalpies of sublimation of high-nitrogen energetic compounds: modified Politzer model. J Mol Graph Model. 2017;72:220–8. https://doi.org/10.1016/j.jmgm.2017.01.013.

    Article  CAS  PubMed  Google Scholar 

  50. Benson SW, Cruickshank FR, Golden DM, Haugen GR, O’Neal HE, Rodgers AS, Shaw R, Walsh R. Additivity rules for the estimation of thermochemical properties. Chem Rev. 1969;69:279–324. https://doi.org/10.1021/cr60259a002.

    Article  CAS  Google Scholar 

  51. Holmes JL, Aubry C. Group additivity values for estimating the enthalpy of formation of organic compounds: an update and reappraisal. 2. C,H,N,O,S, and halogens. J Phys Chem A. 2012;116:7196–209. https://doi.org/10.1021/jp303780m.

    Article  CAS  PubMed  Google Scholar 

  52. Kondrikov BN, Sumin AI. Equation of state for gases at high pressure. Combust Expl Shock Waves. 1987;23(1):105–13. https://doi.org/10.1007/BF00755649.

    Article  Google Scholar 

  53. Jafari M, Keshavarz MH, Motamedi MR, Hosseini SH. An improved correlation for reliable assessment of the detonation performance of non-ideal explosives containing metals and the other solid particulates. ZAAC. 2021;647(6):673–80. https://doi.org/10.1002/zaac.2020004.

    Article  CAS  Google Scholar 

  54. Meyer R, Köhler J, Homburg A. Explosives. Hoboken: Wiley; 2016.

    Book  Google Scholar 

  55. Sinditskii VP, Egorshev VY, Serushkin VV, Levshenkov AI, Berezin MV, Filatov SA. Combustion of energetic materials governed by reactions in the condensed phase. Int J Energy Mater Chem Propuls. 2010;9(2):147–92. https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.v9.i2.30.

    Article  Google Scholar 

  56. Sinditskii VP, Egorshev VY, Berezin MV, Serushkin VV. Mechanism of HMX combustion in a wide range of pressures. Combust Expl Shock Waves. 2009;45(4):461–77. https://doi.org/10.1007/s10573-009-0057-x.

    Article  Google Scholar 

  57. Sinditskii VP, Egorshev VY, Serushkin VV, Levshenkov AI, Berezin MV, Filatov SA, Smirnov SP. Evaluation of decomposition kinetics of energetic materials in the combustion wave. Thermochim Acta. 2009;496(1–2):1–12. https://doi.org/10.1016/j.tca.2009.07.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement with Zelinsky Institute of Organic Chemistry RAS No. 075-15-2020-803). X-ray diffraction data were collected using the equipment of Center for molecular composition studies of INEOS RAS with the financial support from Ministry of Science and Higher Education of the Russian Federation (Contract/Agreement No. 075-03-2023-642).The authors would like to acknowledge to Mrs. N.N. Kondakova for the assistance with thermoanalytical experiments.

Author information

Authors and Affiliations

Authors

Contributions

GFR contributed to conceptualization, visualization, writing—original draft, writing—review and editing; VPS contributed to conceptualization, visualization, writing—original draft, writing—review and editing; VVS contributed to methodology, formal analysis; VYE contributed to methodology, formal analysis, writing—original draft; SSZ contributed to investigation; AIB contributed to investigation; AIK contributed to investigation; PRV contributed to investigation; and SAA contributed to investigation, visualization, formal analysis, writing—original draft.

Corresponding author

Correspondence to Valery P. Sinditskii.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 12861 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudakov, G.F., Sinditskii, V.P., Serushkin, V.V. et al. In search of the most thermostable 1,1,1-trinitrocompounds: polynitroethyl-substituted sym-tetrazine and bistriazolotetrazine. J Therm Anal Calorim 149, 2119–2136 (2024). https://doi.org/10.1007/s10973-023-12795-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12795-w

Keywords

Navigation