Skip to main content
Log in

Mechanism of HMX combustion in a wide range of pressures

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Data obtained in the present work and available publications on combustion of cyclotetramethylene tetranitramine (HMX) at different initial temperatures are analyzed. The temperature sensitivity of the HMX burning rate is demonstrated to increase with increasing initial temperature at pressures of 0.1 to 10 MPa, which is typical for combustion of substances with the leading reaction in the condensed phase (c-phase model). Experimental values of the temperature sensitivity of the burning rate in the pressure interval between 0.1 and 1 MPa are higher than the values predicted by the c-phase model, but this fact indicates the transition of the combustion process to another regime rather than the combustion instability in this area. The flame structure of burning HMX with different additives is studied with the help of thin tungsten-rhenium thermocouples in the pressure range from 0.025 to 1 MPa. The gas-phase flame is found to ignite in an inductive mode, at least up to a pressure of 1 MPa. The surface temperature is obtained as a function of pressure on the basis of experimental data in a wide range of pressures: ln p = −14,092/T + 21.72 (p in atm). Two possible reasons for the oscillatory regime of HMX combustion observed at atmospheric pressure are proposed: the emergence of resonance phenomena during combustion of an inhomogeneous gas mixture in the tube and the lack of correspondence between the chemical reaction rate in the gas phase at the instant of the resonance and its energy capabilities, which do not allow a necessary HMX gasification rate to be ensured. A mechanism of HMX combustion is proposed, which offers an adequate description in a wide range of pressures up to 10 MPa. The mechanism is based on the leading role of HMX decomposition in the melt at the surface temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Beckstead and K. P. McCarty, “Calculated combustion characteristics of nitramine monopropellants, ” in: 13th JANNAF Combustion Meeting (1976), Vol. 1, pp. 57–68.

    Google Scholar 

  2. C. F. Price, T. L. Boggs, and R. L. Derr, “The steady-state combustion behavior of ammonium perchlorate and HMX, ” AIAA Paper No. 79-0164 (1979).

  3. M. Ben-Reuven and L. Caveny, “Nitramine flame chemistry and deflagration interpreted in terms of flame model, ” AIAA Paper No. 79-1133 (1979).

  4. N. Cohen, G. Lo, and J. Crowley, “Model and chemistry of HMX combustion, ” AIAA J., 23, No. 2, 276–282 (1985).

    Article  ADS  Google Scholar 

  5. T. Mitani and F. A. Williams, “A model for the deflagration of nitramines, ” in: Proc. 21st Symp. (Int.) on Combustion, Combustion Institute (1986), pp. 1965–1974.

  6. M. W. Beckstead, “Modeling AN, AP, HMX, and double base monopropellants, ” in: 26th JANNAF Combustion Meeting, CPIA Publ. No. 529, Vol. 4 (1989), pp. 255–268.

    Google Scholar 

  7. S. C. Li, F. A. Williams, and S. B. Margolis, “Effects of two-phase flow in a model for nitramine deflagration, ” Combust. Flame, 80, 329–349 (1990).

    Article  Google Scholar 

  8. M. J. Ward, S. F. Son, and M. Q. Brewster, “Steady deflagration of HMX with simple kinetics: A gas phase chain reaction model, ” Combust. Flame, 114, Nos. 3–4, 556–568 (1998).

    Article  Google Scholar 

  9. J. E. Davidson and M. W. Beckstead, “A three-phase model of HMX combustion, ” in: 26th Symp. (Int.) on Combustion, The Combustion Institute (1996), pp. 1989–1996.

  10. K. Prasad, R. A. Yetter, and M. D. Smooke, “An eigenvalue method for computing the burning rates of RDX propellants, ” Combust. Sci. Technol., 124, 35–82 (1997).

    Article  Google Scholar 

  11. T. L. Boggs, “The thermal behavior of cyclotrimethylenetrinitramine (RDX) and cyclotetramethylenetetranitramine (HMX), ” in: K. K. Kuo and M. Summerfield (eds.), Progress in Astronautics and Aeronautics, Vol. 90: Fundamentals of Solid-Propellant Combustion, Academic Press, New York (1984), pp. 121–175.

    Google Scholar 

  12. N. Kubota and S. Sakamoto, “Combustion mechanism of HMX, ” Propell., Explos., Pyrothechnics, 14, No. 1, 6–11 (1989).

    Article  Google Scholar 

  13. A. Zenin, “HMX and RDX: Combustion mechanism and influence on modern double-base propellant combustion, ” J. Propuls. Power, 11, No. 4, 752–758 (1995).

    Article  Google Scholar 

  14. A. A. Zenin, V. M. Puchkov, and S. V. Finjakov, “Characteristics of HMX combustion waves at various pressures and initial temperatures, ” Combust., Expl., Shock Waves, 34, No. 2, 170–176 (1998).

    Article  Google Scholar 

  15. A. A. Zenin and S. V. Finjakov, “Characteristics of octogen and hexogen combustion: A comparison, ” in: Energetic Materials, Proc. 37th Int. Annu. Conf. of ICT, Karlsruhe, FRG (2006), pp. 154(1)–154(18).

  16. N. E. Ermolin and V. E. Zarko, “Modeling of cyclic-nitramine combustion, ” Combust., Expl., Shock Waves, 34, No. 5, 485–501 (1998).

    Article  Google Scholar 

  17. M. W. Beckstead, “Recent progress in modeling solid propellant combustion, ” Combust., Expl., Shock Waves, 42, No. 6, 623–641 (2006).

    Article  Google Scholar 

  18. A. A. Zenin, “Comments to M. W. Beckstead’s paper “Recent progress in modeling solid propellant combustion, ” Combust., Expl., Shock Waves, 43, No. 2, 241–242 (2007).

    Article  Google Scholar 

  19. M. W. Beckstead, “Condensed-phase control? Or gas-phase control?” Combust., Expl., Shock Waves, 43, No. 2, 243–245 (2007).

    Article  Google Scholar 

  20. G. Lengelle, J. Duterque, and J. F. Trubert, “Physicochemical mechanisms of solid propellant combustion, ” in: V. Yang, T. B. Brill, and W. Z. Ren (eds.), Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, AIAA, Reston (2000), pp. 287–334.

    Google Scholar 

  21. A. F. Belyaev, “Combustion of explosives, ” Zh. Fiz. Khim., 12, No. 1, 93–99 (1938).

    Google Scholar 

  22. Ya. B. Zel’dovich, “Theory of combustion of propellants and explosives, ” Zh. Éksp. Teor. Fiz., 12, Nos. 11/12, 498–524 (1942).

    Google Scholar 

  23. G. V. Belov, “Thermodynamic analysis of combustion products at high temperature and pressure, ” Propell., Explos., Pyrotechnics, 23, 86–89 (1998).

    Article  Google Scholar 

  24. A. I. Atwood, T. L. Boggs, P. O. Curran, and D. M. Hanson-Parr, “Burning rate of solid propellant ingredients. Part 1: Pressure and initial temperature effects, ” J. Propuls. Power, 15, No. 6, 740–742 (1999).

    Article  Google Scholar 

  25. A. P. Glazkova, Data of the Combustion Laboratory of the Institute of Chemical Physics of the Russian Academy of Sciences (Database entitled “Flame” on combustion of explosives and powders), Mendeleev University of Chemical Technology of Russia (1990–1999).

  26. O. P. Korobeinichev, L. V. Kuibida, and V. Zh. Madirbaev, “Investigation of the chemical structure of the HMX flame, ” Combust., Expl., Shock Waves, 20, No. 3, 282–285 (1984).

    Google Scholar 

  27. V. P. Sinditskii, V. Y. Egorshev, A. I. Levshenkov, and V. V. Serushkin, “Combustion of ammonium dinitramide. Part 1: Burning behavior, ” J. Propuls. Power, 22, No. 4, 769–776 (2006).

    Article  Google Scholar 

  28. T. L. Boggs, C. F. Price, D. E. Zurn, et al., “Temperature sensitivity of deflagration rate of HMX, ” in: 13th JANNAF Combustion Meeting, CPIA Publ. No. 281, (1976), pp. 45–56.

  29. T. P. Parr, T. L. Boggs, C. E. Price, and D. M. Hanson-Parr, “Measurements of temperature sensitivity of HMX burn rates, ” in: 19th JANNAF Combustion Meeting, CPIA Publ. No. 366, Vol. 1 (1982), pp. 281–288.

    Google Scholar 

  30. V. N. Simonenko, V. E. Zarko, and A. B. Kiskin, “Characterization of self-sustaining combustion of cyclic nitramines, ” in: Energetic Materials, Proc. 29th Int. Annu. Conf. of ICT, Karlsruhe (1998), pp. 169(1)–169(14).

  31. A. D. Margolin and A. E. Fogel’zang, “Combustion of tetryl, ” Combust., Expl., Shock Waves, 2, No. 2, 6–11 (1966).

    Article  Google Scholar 

  32. E. B. Washburn and M. W. Beckstead, “Modeling multiphase effects in the combustion of HMX and RDX, ” J. Propuls. Power, 22, No. 5, 938–946 (2006).

    Article  Google Scholar 

  33. V. P. Sinditskii, V. Y. Egorshev, and M. V. Berezin, “Study on combustion of new energetic nitramines, ” in: Proc. 32th Int. Annu. Conf. of ICT, Karlsruhe (2001), Paper No. 59.

  34. J. W. Taylor and R. J. Crookes, “Vapour pressure and enthalpy of sublimation of 1,3,5,7-Tetranitro-1,3,5,7-tetraazacyclooctane (HMX), ” J. Chem. Soc., Trans. I, 72, 723–729 (1976).

    Article  Google Scholar 

  35. A. N. Ali, S. F. Son, B. W. Asay, et al., “High-irradiance laser ignition of explosives, ” Combust. Sci. Technol., 175, 1551–1571 (2003).

    Article  Google Scholar 

  36. G. N. Kudva and T. A. Litzinger, “Comparison of laser- and pressure-driven thrust response of HMX, ” J. Propuls. Power, 18, No. 6, 1218–1226 (2002).

    Article  Google Scholar 

  37. R. A. Yetter, F. L. Dryer, M. T. Allen, and J. L. Gatto, “Development of gas-phase reaction mechanism for nitramine combustion, ” J. Propuls. Power, 11, No. 4, 683–697 (1995).

    Article  Google Scholar 

  38. P. F. Pokhil, O. I. Nefedova, and A. D. Margolin, “Anomalous dependence of the powder burning rate on initial temperature, ” Dokl. Akad. Nauk SSSR, 145, No. 4, 860–862 (1962).

    Google Scholar 

  39. G. N. Kudva, “A study of lazer and pressure-driven response measurements for propellants at low pressure, ” Ph. D. Thesis, Pennsylvania State University (2001).

  40. J. M. Rosen and C. Dickenson, “Vapor pressures and heats of sublimation of some high melting organic explosives, ” J. Chem. Eng. Data, 14, 120–124 (1969).

    Article  Google Scholar 

  41. R. B. Cundall, T. F. Palmer, and C. E. C. Wood, “Vapor pressures measurements of some organic explosives, ” J. Chem. Soc., Faraday Trans. I, 74, 1339–1345 (1978).

    Article  Google Scholar 

  42. P. G. Hall, “Thermal decomposition and phase transitions in solid nitramines, ” Trans. Faraday Soc., 67, No. 3, 556–562 (1971).

    Article  Google Scholar 

  43. Yu. A. Maksimov, “Boiling temperature and enthalpy of vaporization of liquid RDX and HMX, ” Zh. Fiz. Khim., 66, No. 2, 540–542 (1992).

    MathSciNet  Google Scholar 

  44. A. P. Korobko, I. V. Levakova, S. V. Krasheninikov, et al., “Solubility of nitrocompounds in an active binder based on polyester urethane rubber and nitroglycerin, ” Vooruzhenie. Politika. Konversiya, No. 5, 69–74 (2002).

  45. J.-S. Lee, C.-K. Hsu, and C.-L. Chang, “A study on the thermal decomposition behaviours on PETN, RDX, HNS and HMX, ” Thermochim. Acta, 392,393, 173–176 (2002).

    Article  Google Scholar 

  46. G. Singh, S. P. Felix, and P. Soni, “Studies on energetic compounds. Part 28: Thermolysis of HMX and its plastic bonded explosives containing estane, ” Thermochim. Acta, 399, 153–165 (2003).

    Article  Google Scholar 

  47. A. A. Paletsky, E. N. Volkov, and O. P. Korobeinichev, “HMX flame structure for combustion in air at a pressure of 1 atm, ” Combust., Expl., Shock Waves, 44, No. 6, 639–654 (2008).

    Article  Google Scholar 

  48. T. P. Parr and D. M. Hanson-Parr, “Thermal properties measurements of solid rocket propellant oxidizers and binder materials as a function of temperature, ” J. Energ. Mater., 17, No. 1, 1–47 (1999).

    Article  Google Scholar 

  49. Yu. Ya. Maksimov, “Thermal decomposition of RDX and HMX, ” in: Theory of Explosives, Papers of the Mendeleev University of Chemical Technology, Issue 53, Vysshaya Shkola, Moscow (1967), pp. 73–84.

    Google Scholar 

  50. J. C. Oxley, A. B. Kooh, R. Szekers, and W. Zhang, “Mechanism of nitramines thermolysis, ” J. Phys. Chem., 98, No. 28, 7004–7008 (1994).

    Article  Google Scholar 

  51. A. I. B. Robertson, “The thermal decomposition of explosives. — II: Cyclotrimethylenetrinitramine and cyclotetramethylenetetranitramine, ” Trans. Faraday Soc., 45, 85–93 (1949).

    Article  Google Scholar 

  52. C.E.H. Baun, in: W. E. Garner (ed.), Chemistry of the Solid State [Russian translation], Izd. Inostr. Lit., Moscow (1961), pp. 335–353.

    Google Scholar 

  53. G. Lengelle, “Thermal degradation kinetics and surface pyrolysis of vinyl polymers, ” AIAA J., 8, No. 11, 1989–1996 (1970).

    Article  ADS  Google Scholar 

  54. A. G. Merzhanov and F. I. Dubovitskii, “Theory of steady combustion of powder, ” Dokl. Akad. Nauk SSSR, 129, No. 1, 153–156 (1959).

    Google Scholar 

  55. V. N. Simonenko, A. B. Kiskin, V. E. Zarko, and A. G. Svit, “Special features of nitramine combustion at atmospheric pressure, ” Combust., Expl., Shock Waves, 33, No. 6, 685–687 (1997).

    Article  Google Scholar 

  56. C.-J. Tang, Y. Lee, and T. A. Litzinger, “Simultaneous temperature and species measurements during self-oscillating burning of HMX, ” J. Propuls. Power, 15, No. 2, 296–303 (1999).

    Article  Google Scholar 

  57. B. V. Novozhilov, Unsteady Combustion of Solid Propellants [in Russian], Nauka, Moscow (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Sinditskii.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 4, pp. 128–146, July–August, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinditskii, V.P., Egorshev, V.Y., Berezin, M.V. et al. Mechanism of HMX combustion in a wide range of pressures. Combust Explos Shock Waves 45, 461–477 (2009). https://doi.org/10.1007/s10573-009-0057-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0057-x

Key words

Navigation