Skip to main content

Advertisement

Log in

Thermochemical parameters of phase transitions of antibacterial drugs: sulfamethoxazole, sulfapyridine and sulfamethazine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present work, the vapour pressures over solid samples of sulfamethoxazole, sulfapyridine and sulfamethazine were measured by fast scanning calorimetry (FSC). Due to the thermal decomposition of the samples, it was not possible to measure the vapour pressure of these compounds by transpiration method. The IR spectrum of the condensed sample in the sulfamethoxazole transpiration experiment showed that the transferred substance was 5-methyl-3-isoxazolamine. The temperature dependencies of the vapour pressure determined using FSC were used to determine the enthalpy of sublimation at the mean temperature of the experiment. Fusion enthalpies and heat capacities of solid and supercooled liquid samples of sulfamethoxazole, sulfapyridine and sulfamethazine were measured by differential and fast scanning calorimetries. The dependencies of the heat capacity over wide temperature ranges were approximated by linear equations. The fusion enthalpies were compared with literature data and used to calculate weighted averages. The weighted mean values of the fusion enthalpies at the melting temperature were adjusted to 298.15 K using Kirchhoff’s law. In addition, the values of the heat capacity difference between the solid and gaseous phases were estimated using the experimental values of the heat capacities and the empirical approach. These values were used to adjust the enthalpy of sublimation from experimental temperature to 298.15 K. Using the sublimation and fusion enthalpies, the vaporization enthalpies of three sulfonamides at 298.15 K were determined.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Novelli A, Rosi E. Pharmacological properties of oral antibiotics for the treatment of uncomplicated urinary tract infections. J Chemother. 2017. https://doi.org/10.1080/1120009X.2017.1380357.

    Article  PubMed  Google Scholar 

  2. Dannenfelser R-M, Yalkowsky SH. Data base of aqueous solubility for organic non-electrolytes. Sci Total Environ. 1991. https://doi.org/10.1016/0048-9697(91)90214-Y.

    Article  Google Scholar 

  3. Colombo M, Minussi C, Orthmann S, Staufenbiel S, Bodmeier R. Preparation of amorphous indomethacin nanoparticles by aqueous wet bead milling and in situ measurement of their increased saturation solubility. Eur J Pharm Biopharm. 2018. https://doi.org/10.1016/j.ejpb.2018.01.013.

    Article  PubMed  Google Scholar 

  4. Babu NJ, Nangia A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst Growth Des. 2011. https://doi.org/10.1021/cg200492w.

    Article  Google Scholar 

  5. Singh A, Van den Mooter G. Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev. 2016. https://doi.org/10.1016/j.addr.2015.12.010.

    Article  PubMed  Google Scholar 

  6. Chapman WG, Fouad WA. Activity coefficients from an equation of state: novel approach for fast phase equilibrium calculations. Ind Eng Chem Res. 2021. https://doi.org/10.1021/acs.iecr.1c03800.

    Article  Google Scholar 

  7. Do HT, Chua YZ, Kumar A, Pabsch D, Hallermann M, Zaitsau D, et al. Melting properties of amino acids and their solubility in water. RSC Adv. 2020. https://doi.org/10.1039/D0RA08947H.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Do HT, Chua YZ, Habicht J, Klinksiek M, Hallermann M, Zaitsau D, et al. Melting properties of peptides and their solubility in water. Part 1: dipeptides based on glycine or alanine. RSC Adv. 2019;9:32722–327343. https://doi.org/10.1039/C9RA05730G.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Do HT, Chua YZ, Habicht J, Klinksiek M, Volpert S, Hallermann M, et al. Melting properties of peptides and their solubility in water. Part 2: Di- and tripeptides based on Glycine, Alanine, Leucine, Proline, and Serine. Ind Eng Chem Res. 2021;60:4693–704. https://doi.org/10.1021/acs.iecr.0c05652.

    Article  CAS  Google Scholar 

  10. Sunwoo C, Eisen H. Solubility parameter of selected sulfonamides. J Pharm Sci. 1971. https://doi.org/10.1002/jps.2600600217.

    Article  PubMed  Google Scholar 

  11. Issa YM, El-Ansary AL, Selim W. Enthalpimetric determination of sulfa drugs in pure form and pharmaceutical formulations. Anal Lett. 1998. https://doi.org/10.1080/00032719808001838.

    Article  Google Scholar 

  12. Padrela L, Rodrigues MA, Velaga SP, Fernandes AC, Matos HA, de Azevedo EG. Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process. J Supercrit Fluids. 2010. https://doi.org/10.1016/j.supflu.2010.01.010.

    Article  Google Scholar 

  13. Khattab FI. Thermal analysis of pharmaceutical compounds. V. The use of differential scanning calorimetry in the analysis of certain pharmaceuticals. Thermochim Acta. 1983;61:253–68. https://doi.org/10.1016/0040-6031(83)80280-9.

    Article  CAS  Google Scholar 

  14. Mantheni DR, Maheswaram MPK, Munigeti R, Perera I, Riga A, Alexander KS. Solid- and liquid-state studies of a wide range of chemicals by isothermal and scanning dielectric thermal analysis. J Therm Anal Calorim. 2014. https://doi.org/10.1007/s10973-013-3304-z.

    Article  Google Scholar 

  15. Miyako Y, Khalef N, Matsuzaki K, Pinal R. Solubility enhancement of hydrophobic compounds by cosolvents: Role of solute hydrophobicity on the solubilization effect. Int J Pharm. 2010. https://doi.org/10.1016/j.ijpharm.2010.03.059.

    Article  PubMed  Google Scholar 

  16. Hu J, Johnston KP, Williams RO 3rd. Rapid dissolving high potency danazol powders produced by spray freezing into liquid process. Int J Pharm. 2004. https://doi.org/10.1016/j.ijpharm.2003.11.003.

    Article  PubMed  Google Scholar 

  17. Qiang W, Löbmann K, McCoy CP, Andrews GP, Zhao M. Microwave-induced in situ amorphization: a new strategy for tackling the stability issue of amorphous solid dispersions. Pharmaceutics. 2020. https://doi.org/10.3390/pharmaceutics12070655.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ditzinger F, Wieland R, Statelova M, Vertzoni M, Holm R, Kuentz M. In vivo performance of innovative polyelectrolyte matrices for hot melt extrusion of amorphous drug systems. Mol Pharmaceutics. 2020. https://doi.org/10.1021/acs.molpharmaceut.0c00485.

    Article  Google Scholar 

  19. Lapuk SE, Ziganshin MA, Larionov RA, Mukhametzyanov TA, Schick C, Gerasimov AV. Differential scanning calorimetry investigation of crystallization kinetics and glass-forming ability of sulfonamides. J Non Cryst Solids. 2023. https://doi.org/10.1016/j.jnoncrysol.2022.122038.

    Article  Google Scholar 

  20. Volkova TV, Blokhina SV, Ryzhakov AM, Sharapova AV, Ol’khovich MV, Perlovich GL. Vapor pressure and sublimation thermodynamics of aminobenzoic acid, nicotinic acid, and related amido-derivatives. J Therm Anal Calorim. 2016;123:841–9. https://doi.org/10.1007/s10973-015-4969-2.

    Article  CAS  Google Scholar 

  21. Ziganshin MA, Bikmukhametova AA, Gerasimov AV, Gorbatchuk VV, Ziganshina SA, Bukharaev AA. The effect of substrate and air humidity on morphology of films of L-leucyl-L-leucine dipeptide. Prot Met Phys Chem Surf. 2014. https://doi.org/10.1134/S2070205114010171.

    Article  Google Scholar 

  22. Nagrimanov RN, Samatov AA, Buzyurov AV, Kurshev AG, Ziganshin MA, Zaitsau DH, Solomonov BN. Thermochemical properties of mono- and di-cyano-aromatic compounds at 298.15 K. Thermochim Acta. 2018;668:152–8. https://doi.org/10.1016/j.tca.2018.07.026.

    Article  CAS  Google Scholar 

  23. Kulikov D, Verevkin SP, Heintz A. Determination of vapor pressures and vaporization enthalpies of the aliphatic branched C5 and C6 alcohols. J Chem Eng Data. 2001. https://doi.org/10.1021/je010187p.

    Article  Google Scholar 

  24. Verevkin SP, Emel’yanenko VN. Transpiration method: vapor pressures and enthalpies of vaporization of some low-boiling esters. Fluid Phase Equilib. 2008;266:64–75. https://doi.org/10.1016/j.fluid.2008.02.001.

    Article  CAS  Google Scholar 

  25. Buzyurov AV, Nagrimanov RN, Zaitsau DH, Mukhametzyanov TA, Abdelaziz A, Solomonov BN, et al. Application of the flash DSC 1 and 2+ for vapor pressure determination above solids and liquids. Thermochim Acta. 2021. https://doi.org/10.1016/j.tca.2021.179067.

    Article  Google Scholar 

  26. Sabbah R, Xu-wu A, Chickos JS, Leitão MLP, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999. https://doi.org/10.1016/S0040-6031(99)00009-X.

    Article  Google Scholar 

  27. Goursot P, Girdhar HL, Westrum EF. Thermodynamics of polynuclear aromatic molecules. III. Heat capacities and enthalpies of fusion of anthracene. J Phys Chem. 1970;74:2538–41. https://doi.org/10.1021/j100706a022.

    Article  CAS  Google Scholar 

  28. Buzyurov AV, Nagrimanov RN, Zaitsau DH, Mukhametzyanov TA, Abdelaziz A, Solomonov BN, et al. Application of the flash DSC 1 and 2+ for vapor pressure determination above solids and liquids. Thermochim Acta. 2021;706:179067. https://doi.org/10.1016/j.tca.2021.179067.

    Article  CAS  Google Scholar 

  29. Zhuravlev E, Schick C. Fast scanning power compensated differential scanning nano-calorimeter: 2 heat capacity analysis. Thermochim Acta. 2010. https://doi.org/10.1016/j.tca.2010.03.020.

    Article  Google Scholar 

  30. Wong W-K, Westrum EF. Thermodynamics of polynuclear aromatic molecules I. Heat capacities and enthalpies of fusion of pyrene, fluoranthene, and triphenylene. J Chem Thermodyn. 1971;3:105–24. https://doi.org/10.1016/S0021-9614(71)80071-X.

    Article  CAS  Google Scholar 

  31. Roux MV, Temprado M, Chickos JS, Nagano Y. Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons. J Phys Chem Ref Data. 2008. https://doi.org/10.1063/1.2955570.

    Article  Google Scholar 

  32. Nagrimanov RN, Samatov AA, Solomonov BN. Non-additivity in the solvation enthalpies of substituted phenols and estimation of their enthalpies of vaporization/sublimation at 298.15K. J Mol Liq. 2016;221:914–8. https://doi.org/10.1016/j.molliq.2016.06.063.

    Article  CAS  Google Scholar 

  33. Chickos JS, Hosseini S, Hesse DG, Liebman JF. Heat capacity corrections to a standard state: a comparison of new and some literature methods for organic liquids and solids. Struct Chem. 1993. https://doi.org/10.1007/BF00673701.

    Article  Google Scholar 

  34. Martínez F, Gómez A. Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents. J Sol Chem. 2001. https://doi.org/10.1023/A:1012723731104.

    Article  Google Scholar 

  35. Agafonova EV, Moshchenskii YV, Tkachenko ML. Determining the thermodynamic melting parameters of sulfamethoxazole, trimethoprim, urea, nicodin, and their double eutectics by differential scanning calorimetry. Russ J Phys Chem A. 2013. https://doi.org/10.1134/S0036024413080025.

    Article  Google Scholar 

  36. Chattoraj S, Bhugra C, Telang C, Zhong L, Wang Z, Sun CC. Origin of two modes of non-isothermal crystallization of glasses produced by milling. Pharm Res. 2012. https://doi.org/10.1007/s11095-011-0644-x.

    Article  PubMed  Google Scholar 

  37. Delgado DR, Almanza OA, Martínez F, Peña MA, Jouyban A, Acree WE. Solution thermodynamics and preferential solvation of sulfamethazine in (methanol+water) mixtures. J Chem Thermodyn. 2016. https://doi.org/10.1016/j.jct.2016.02.002.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (RSF Grant 22-23-00312), https://rscf.ru/en/project/22-23-00312/. The authors thank technician Alexander E. Klimovitskii for the careful IR spectroscopy experiments.

Author information

Authors and Affiliations

Authors

Contributions

RNN contributed to writing—original draft preparation. AAI was involved in writing—review and editing. AVB contributed to writing—review and editing. SEL was involved in investigation. RAL contributed to investigation. AVG was involved in investigation. MAZ contributed to investigation.

Corresponding author

Correspondence to Ruslan N. Nagrimanov.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 846 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagrimanov, R.N., Italmasov, A.R., Buzyurov, A.V. et al. Thermochemical parameters of phase transitions of antibacterial drugs: sulfamethoxazole, sulfapyridine and sulfamethazine. J Therm Anal Calorim 149, 1433–1442 (2024). https://doi.org/10.1007/s10973-023-12757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12757-2

Keywords

Navigation