Skip to main content

Advertisement

Log in

Origin of Two Modes of Non-isothermal Crystallization of Glasses Produced by Milling

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To mechanistically explain the origin of two distinct non-isothermal crystallization modes, single-peak (unimodal) and two-peak (bimodal), of organic glasses.

Methods

Glasses of ten organic molecules were prepared by melt-quenching and cryogenic milling of crystals. Non-isothermal crystallization of glasses was monitored using differential scanning calorimetry and powder X-ray diffractometry.

Results

The non-isothermal crystallization of glass, generated by milling, is either unimodal or bimodal, while that of melt-quenched glass without being milled is always unimodal. The mode of crystallization of amorphous phase depends on the relative position of the crystallization onset (T c ) with respect to glass transition temperature (T g ), and can be explained by a surface crystallization model. Bimodal crystallization event is observed when T c is below or near T g , due to the fast crystallization onset at milled glass surfaces. Unimodal crystallization is observed when T c is well above T g . We have verified this model by intentionally inducing flip between the two crystallization modes for several compounds through manipulating glass surface area and T c .

Conclusions

The two modes of crystallization of organic glasses is a result of the combined effects of faster surface crystallization and variation in specific surface area by milling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Del Rev. 2001;48:27–42.

    Article  CAS  Google Scholar 

  2. Hilden LR, Morris KR. Physics of amorphous solids. J Pharm Sci. 2001;93:3–12.

    Article  Google Scholar 

  3. Levine H, Slade L, Levine H. Progress in food processing and storage, based on amorphous product technology. Cambridge: The Royal Society of Chemistry; 2002.

    Google Scholar 

  4. Blanshard JMV, Lillford P. The glassy state in foods. Nottingham: Nottingham University Press; 1993.

    Google Scholar 

  5. Crowe JH, Carpenter JF, Crowe LM. The role of vitrification in anhydrobiosis. Annu Rev Physiol. 1998;60:73–103.

    Article  PubMed  CAS  Google Scholar 

  6. Greer AL. Metallic glasses. Science. 1995;267:1947–53.

    Article  PubMed  CAS  Google Scholar 

  7. Fan GJ, Guo FQ, Hu ZQ, Quan MX, Lu K. Amorphization of selenium induced by high-energy ball milling. Phys Rev B. 1997;55:11010–3.

    Article  CAS  Google Scholar 

  8. Lin ZJ, Zhuo MJ, Sun ZQ, Veyssiere P, Zhou YC. Amorphization by dislocation accumulation in shear bands. Acta Mater. 2009;57:2851–7.

    Article  CAS  Google Scholar 

  9. Huttenrauch R, Fricke S, Zeilke P. Mechanical activation of pharmaceutical systems. Pharm Res. 1985:302–306.

  10. Willart JF, Descamps M. Solid state amorphization of pharmaceuticals. Mol Pharm. 2008;5:905–20.

    Article  PubMed  CAS  Google Scholar 

  11. Willart JF, De Gusseme A, Hemon S, Odou G, Danede F, Descamps M. Direct crystal to glass transformation of trehalose induced by ball milling. Solid State Comm. 2001;119:501–5.

    Article  CAS  Google Scholar 

  12. Suryanarayana C. Mechanical alloying and milling. Progr Mater Sci. 2001;46:1.

    Article  CAS  Google Scholar 

  13. Tromans D, Meech JA. Enhanced dissolution of minerals: Stored energy, amorphism and mechanical activation. Miner Eng. 2001;14:1359–77.

    Article  CAS  Google Scholar 

  14. Liu J, Rigsbee DR, Stotz C, Pikal MJ. Dynamics of pharmaceutical amorphous solids: the study of enthalpy relaxation by isothermal microcalorimetry. J Pharm Sci. 2002;91:1853–62.

    Article  PubMed  CAS  Google Scholar 

  15. Hodge IM. Enthalpy relaxation and recovery in amorphous materials. J Non-Cryst Solids. 1994;169:211–66.

    Article  CAS  Google Scholar 

  16. Crowley KJ, Zografi G. Polymorphs and solvates: assessment of amorphous phase formation and amorphous phase physical stability. J Pharm Sci. 2002;91:492–507.

    Article  PubMed  CAS  Google Scholar 

  17. Bhugra C, Rambhatla S, Bakri A, Duddu SP, Miller DP, Pikal MJ, Lechuga-Ballesteros D. Prediction of the onset of crystallization of amorphous sucrose below the calorimetric glass transition temperature from correlations with mobility. J Pharm Sci. 2007;96:1258–69.

    Article  PubMed  CAS  Google Scholar 

  18. Bhugra C, Pikal MJ. role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci. 2008;97:1329–49.

    Article  PubMed  CAS  Google Scholar 

  19. Roberts CJ, Debenedetti PG. Engineering pharmaceutical stability with amorphous solids. AIChE J. 2002;48:1140–4.

    Article  CAS  Google Scholar 

  20. Feng T, Pinal R, Carvajal MT. Process induced disorder in crystalline materials: differentiating defective crystals from the amorphous form of griseofulvin. J Pharm Sci. 2008;97:3207–21.

    Article  PubMed  CAS  Google Scholar 

  21. Feng T, Bates S, Carvajal MT. Toward understanding the evolution of griseofulvin crystal structure to a mesophase after cryogenic milling. Int J Pharm. 2008;367:16–9.

    Article  PubMed  Google Scholar 

  22. Chamarthy SP, Pinal R. The nature of crystal disorder in milled pharmaceutical materials. Colloid Surface A. 2008;331:68–75.

    Article  CAS  Google Scholar 

  23. Trasi NS, Boerrigter SXM, Byrn SR. Investigation of the milling-induced thermal behavior of crystalline and amorphous griseofulvin. Pharm Res. 2010;27:1377–89.

    Article  PubMed  CAS  Google Scholar 

  24. Yu L, Mishra D, Rigsbee DR. Determination of glass properties of mannitol using sorbitol as an impurity. J Pharm Sci. 1998;87:774–7.

    Article  PubMed  CAS  Google Scholar 

  25. Zhou D, Schmitt EA, Zhang GG, Law D, Vyazovkin S, Wright CA, Grant DJW. Crystallization kinetics of amorphous nifedipine studied by model-fitting and model-free approaches. J Pharm Sci. 2003;92:1779–92.

    Article  PubMed  CAS  Google Scholar 

  26. Lefort R, De Gusseme A, Willart JF, Danede F, Descamps M. Solid state NMR and DSC methods for quantifying the amorphous content in solid dosage forms: an application to ball-milling of trehalose. Int J Pharm. 2004;280:209–19.

    Article  PubMed  CAS  Google Scholar 

  27. Grisedale LC, Jamieson MJ, Belton PS, Barker SA, Craig DQM. Characterization and quantification of amorphous material in milled and spray-dried salbutamol sulfate: a comparison of thermal, spectroscopic, and water vapor sorption approaches. J Pharm Sci. 2011;100:3114–29.

    Article  PubMed  CAS  Google Scholar 

  28. Saleki-Gerhardt A, Ahlneck C, Zografi G. Assessment of disorder in crystalline solids. Int J Pharm. 1994;101:237–47.

    Article  CAS  Google Scholar 

  29. Patterson JE, James MB, Forster AH, Lancaster RW, Butler JM, Rades T. The influence of thermal and mechanical preparative techniques on the amorphous state of four poorly soluble compounds. J Pharm Sci. 2005;94:1998–2012.

    Article  PubMed  CAS  Google Scholar 

  30. Wu T, Yu L. Surface crystallization of indomethacin below Tg. Pharm Res. 2006;23:2350–5.

    Article  PubMed  CAS  Google Scholar 

  31. Zhu L, Jona J, Nagapudi K, Wu T. Fast surface crystallization of amorphous griseofulvin below Tg. Pharm Res. 2010;27:1558–67.

    Article  PubMed  CAS  Google Scholar 

  32. Zhu L, Wong L, Yu L. Surface-enhanced crystallization of amorphous nifedipine. Mol Pharm. 2008;5:921–6.

    Article  PubMed  CAS  Google Scholar 

  33. Sun Y, Zhu L, Kearns KL, Ediger MD, Yu L. Glasses crystallize rapidly at free surfaces by growing crystals upward. Proc Natl Acad Sci U S A. 2011;108:5990–5.

    Article  PubMed  CAS  Google Scholar 

  34. Zhu L, Brian CW, Swallen SF, Straus PT, Ediger MD, Yu L. Surface self-diffusion of an organic glass. Phys Rev Lett. 2011;106:256103-1–4.

    Google Scholar 

  35. Schmelzer J, Pascova R, Moller J, Gutzow I. Surface-induced devitrification of glasses: the influence of elastic strains. J Non-Cryst Solids. 1993;162:26–39.

    Article  CAS  Google Scholar 

  36. Gunn EM, Guzei IA, Yu L. Does crystal density control fast surface crystal growth in glasses? A study with polymorphs. Cryst Growth Des. 2011;11:3979–84.

    Article  CAS  Google Scholar 

  37. Bhugra C, Shmeis R, Pikal MJ. Role of mechanical stress in crystallization and relaxation behavior of amorphous indomethacin. J Pharm Sci. 2007;97:4446–58.

    Article  Google Scholar 

  38. Ozawa T. Critical investigation of methods for kinetic analysis of thermoanalytical data. J Therm Anal. 1975;7:601–17.

    Article  CAS  Google Scholar 

  39. Sun CC, Grant DJW. Compaction properties of L-lysine salts. Pharm Res. 2001;18:281–6.

    Article  PubMed  Google Scholar 

  40. Sun CC. Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose. Int J Pharm. 2008;346:93–101.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments & DISCLOSURES

We thank Boehringer-Ingelheim Pharmaceuticals Inc, Ridgefield, CT for financial support to this work. Some of the experiments were performed at the University of Minnesota I.T. Characterization Facility, which receives partial support from the NSF through the NNIN program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changquan Calvin Sun.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplementary information

(DOC 5448 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattoraj, S., Bhugra, C., Telang, C. et al. Origin of Two Modes of Non-isothermal Crystallization of Glasses Produced by Milling. Pharm Res 29, 1020–1032 (2012). https://doi.org/10.1007/s11095-011-0644-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0644-x

KEY WORDS

Navigation