Skip to main content
Log in

Significance of coupled effects of resistive heating and perpendicular magnetic field on heat transfer process of mixed convective flow of ternary nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The ternary nanofluids are significantly enhanced the thermal conductivity and heat transfer performance of conventional nanofluids. These fluids magnify the thermal properties like coolants in heat transport equipment such as electronic cooling, radiators and heat exchangers. In light of aforementioned importance, the aim of ongoing research is to investigate the thermal performance of water-based ternary nanoliquid which contains metallic and oxide nanoparticles (MoS2, SiO2, Au) through a cylinder subject to normal magnetic field, combined convection, resistive heating and internal heating species. By including these significant physical contribution; basic model transformed into final form and then investigated via RK-technique coupling with shooting scheme. The results for the heat transfer in ternary, hybrid and conventional nanoliquids are simulated under increasing parametric values. It is scrutinized that the amount of MoS2 nanoparticles from 0.1 to 0.6% and Ec (Eckert number) from \(0.01\) to \(0.04\) effectively enhanced the fluid of the functional fluids. In the presence of internal heating species, the rapid increase in the temperature in ternary nanoliquid is examined than that of hybrid and simple fluids. Further, the shear drag on the cylinder surface improved when the strength of mixed convection increased while these effects are better to control the temperature over the working domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shaheen NRM, Kadry S, Abbas M, Saleel CA. Unsteady ternary hybrid-nanofluid flow over an expanding/shrinking cylinder with multiple slips: a Yamada-Ota model implementation. Nanotechnology. 2023. https://doi.org/10.1088/1361-6528/acdaa0.

    Article  PubMed  Google Scholar 

  2. Madhukesh JK, Sarris IE, Prasannakumara BC, Abdulrahman A. Investigation of thermal performance of ternary hybrid nanofluid flow in a permeable inclined cylinder/plate. Energies. 2023. https://doi.org/10.3390/en16062630.

    Article  Google Scholar 

  3. Adun H, Kavaz D, Dagbasi M. Review of ternary hybrid nanofluid: synthesis, stability, thermophysical properties, heat transfer applications, and environmental effects. J Clean Prod. 2021. https://doi.org/10.1016/j.jclepro.2021.129525.

    Article  Google Scholar 

  4. Mishra NK, Adnan, Sohail MU, Bani-Fwaz MZ, Hassan AM. Thermal analysis of radiated (aluminum oxide)/water through a magnet based geometry subject to Cattaneo-Christov and Corcione’s Models. Case Stud Thermal Eng. 2023. https://doi.org/10.1016/j.csite.2023.103390.

    Article  Google Scholar 

  5. Areekara S, Sabu AS, Mathew A, Parvathy KS, Rana P. Significance of nanoparticle radius on EMHD Casson blood-gold nanomaterial flow with non-uniform heat source and Arrhenius kinetics. J Therm Anal Calorim. 2023;148:8945–68.

    Article  CAS  Google Scholar 

  6. Mallick B, Choudhury A, Misra JC. Irreversibility analysis for ion size-dependent electrothermal transport of micropolar fluid in a microtube. J T Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-12538-x.

    Article  Google Scholar 

  7. Nidhish KM, Adnan, Sarfraz G, Fwaz MZB, Eldin SM. Dynamics of Corcione nanoliquid on a convectively radiated surface using Al2O3 nanoparticles. J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-12448-y.

    Article  Google Scholar 

  8. Lone SA, Alyami MA, Saeed A, Dawar A, Kumam P, Kumam W. MHD micropolar hybrid nanofluid flow over a flat surface subject to mixed convection and thermal radiation. Sci Rep. 2022. https://doi.org/10.1038/s41598-022-21255-8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Goud JS, Srilatha P, Kumar RSV, Kumar KT, Khan U, Raizah Z, Gill HS, Galal AM. Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Stud Thermal Eng. 2022. https://doi.org/10.1016/j.csite.2022.102113.

    Article  Google Scholar 

  10. Srilatha P, Abu-Zinadah H, Kumar RSV, Alsulami MD, Kumar RN, Abdulrahman A, Gowda RJP. Effect of nanoparticle diameter in maxwell nanofluid flow with thermophoretic particle deposition. Mathematics. 2023. https://doi.org/10.3390/math11163501.

    Article  Google Scholar 

  11. Mehmood Y, Shafqat R, Sarris IE, Bilal M, Sajid T, Akhtar T. Numerical investigation of MWCNT and SWCNT fluid flow along with the activation energy effects over quartic auto catalytic endothermic and exothermic chemical reactions. Mathematics. 2022. https://doi.org/10.3390/math10244636.

    Article  Google Scholar 

  12. Abdulrahman A, Gamaoun F, Kumar RSV, Khan U, Gill HS, Nagaraja KV, Eldin SM, Galal AM. Study of thermal variation in a longitudinal exponential porous fin wetted with TiO2-SiO2/ hexanol hybrid nanofluid using hybrid residual power series method. Case Stud Thermal Eng. 2023. https://doi.org/10.1016/j.csite.2023.102777.

    Article  Google Scholar 

  13. Kumar RS, Sowmya G. A novel analysis for heat transfer enhancement in a trapezoidal fin wetted by MoS2 + Fe3O4 + NiZnFe2O4- methanol based ternary hybrid nanofluid. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2134605.

    Article  Google Scholar 

  14. Gamaoun F, Said NM, Makki R, Kumar RSV, Sowmya G, Prasannakumara BC, Kumar R. Energy transfer of a fin wetted with ZnO-SAE 50 nanolubricant: an application of α-parameterized differential transform method. Case Stud Thermal Eng. 2022. https://doi.org/10.1016/j.csite.2022.102501.

    Article  Google Scholar 

  15. Yaseen M, Rawat SK, Khan U, Sarris IE, Khan H, Negi AS, Khan A, Sherif ESM, Hassan AM, Zaib A. Numerical analysis of magnetohydrodynamics in an Eyring-Powell hybrid nanofluid flow on wall jet heat and mass transfer. Nanotechnology. 2023. https://doi.org/10.1088/1361-6528/acf3f6.

    Article  PubMed  Google Scholar 

  16. Adnan A, Alharbi KAM, Bani-Fwaz MZ, Eldin SM, Yassen MF. Numerical heat performance of TiO2/Glycerin under nanoparticles aggregation and nonlinear radiative heat flux in dilating/squeezing channel. Case Stud n Thermal Eng. 2023. https://doi.org/10.1016/j.csite.2022.102568.

    Article  Google Scholar 

  17. Nazir U, Saleem S, Zubaidi AA, Shahzadi I, Feroz N. transportation in tri-hybridized Sisko martial with heat source over vertical heated cylinder. Int Commun Heat Mass Transfer. 2022. https://doi.org/10.1016/j.icheatmasstransfer.2022.106003.

    Article  Google Scholar 

  18. Adnan. Heat transfer inspection in [(ZnO-MWCNTs)/water-EG(50:50)]hnf with thermal radiation ray and convective condition over a Riga surface. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2119300.

    Article  Google Scholar 

  19. Alharbi KAM, Adnan, Galal AM. Novel magneto-radiative thermal featuring in SWCNT–MWCNT/C2H6O2–H2O under hydrogen bonding. Int J Modern Phys B. 2023. https://doi.org/10.1142/S0217979224500176.

    Article  Google Scholar 

  20. Shanmugapriya M, Sundareswaran R, Kumar PS. Heat and mass transfer enhancement of MHD hybrid nanofluid flow in the presence of activation energy. Int J Chem Eng. 2021. https://doi.org/10.1155/2021/9473226.

    Article  Google Scholar 

  21. Guedri K, Khan A, Sene N, Raizah Z, Saeed A, Galal AM. Thermal flow for radiative ternary hybrid nanofluid over nonlinear stretching sheet subject to Darcy-Forchheimer phenomenon. Math Probl Eng. 2022. https://doi.org/10.1155/2022/3429439.

    Article  Google Scholar 

  22. Abbas N, Nadeem PDS, Saleem A, Malik MY. Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder. Chin J Phys. 2020. https://doi.org/10.1016/j.cjph.2020.11.019.

    Article  Google Scholar 

  23. Kasaeian A, Daneshazarian R, Mahian O, Kolsi L, Chamkha AJ, Wongwises S, Pop I. Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int J Heat Mass Transf. 2017;107:778–91.

    Article  CAS  Google Scholar 

  24. Sheikholeslami M. Numerical investigation for concentrated photovoltaic solar system in existence of paraffin equipped with MWCNT nanoparticles. Sustain Cities Soc. 2023. https://doi.org/10.1016/j.scs.2023.104901.

    Article  Google Scholar 

  25. Sheikholeslami M, Khalili Z, Scardi P, Ataollahi N. Concentrated solar photovoltaic cell equipped with thermoelectric layer in presence of nanofluid flow within porous heat sink: Impact of dust accumulation. Sustain Cities Soc. 2023. https://doi.org/10.1016/j.scs.2023.104866.

    Article  Google Scholar 

  26. Sheikholeslami M, Khalili Z. Investigation of solar Photovoltaic cell utilizing hybrid nanofluid confined jet and helical fins for improving electrical efficiency in existence of thermoelectric module. Appl Therm Eng. 2023. https://doi.org/10.1016/j.applthermaleng.2023.121329.

    Article  Google Scholar 

  27. Sheikholeslami M, Khalili Z. Investigation of solar photovoltaic-thermoelectric system for building unit in presence of helical tapes and jet impingement of hybrid nanomaterial. J Build Eng. 2023. https://doi.org/10.1016/j.jobe.2023.106871.

    Article  Google Scholar 

  28. Sheikholeslami M, Khalili Z, Momayez L. Efficiency improvement of ternary nanofluid within a solar photovoltaic unit combined with thermoelectric considering environmental analysis. Environ Technol Innov. 2023. https://doi.org/10.1016/j.eti.2023.103315.

    Article  Google Scholar 

  29. Arif M, Persio LD, Kumam P, Watthayu W, Akgül A. Heat transfer analysis of fractional model of couple stress Casson tri-hybrid nanofluid using dissimilar shape nanoparticles in blood with biomedical applications. Sci Rep. 2023. https://doi.org/10.1038/s41598-022-25127-z.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shaheen N, Alshehri HM, Ramzan M, Shah Z, Kumam P. Soret and Dufour effects on a Casson nanofluid flow past a deformable cylinder with variable characteristics and Arrhenius activation energy. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-98898-6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ramzan M, Kumam P, Lone SA, Seangwattana T, Saeed A, Galal AM. A theoretical analysis of the ternary hybrid nanofluid flows over a non-isothermal and non-isosolutal multiple geometries. Heliyon. 2023. https://doi.org/10.1016/j.heliyon.2023.e14875.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sohail M, Zahar ERE, Mousa A, Nazir U, Althobaiti S, Althobaiti A, Shah NA, Chung JD. Finite element analysis for ternary hybrid nanoparticles on thermal enhancement in pseudo-plastic liquid through porous stretching sheet. Sci Rep. 2022. https://doi.org/10.1038/s41598-022-12857-3.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mishra NK, Adnan, Khalid AMA, Rahman KU, Eldin SM, Fwaz MZB. Investigation of improved heat transport featuring in dissipative ternary nanofluid over a stretched wavy cylinder under thermal slip. Case Stud Thermal Eng. 2023. https://doi.org/10.1016/j.csite.2023.103130.

    Article  Google Scholar 

  34. Al-Zahrani AA, Adnan, Mahmood I, Khaleeq RU, Mutasem ZBF, Tag-Eldin E. Analytical study of (Ag–graphene)/blood hybrid nanofluid influenced by (platelets-cylindrical)nanoparticles and joule heating via VIM. ACS Omega. 2023;8:19926–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shatnawi TAM, Abbas N, Shatanaw W. Comparative study of Casson hybrid nanofluid models with induced magnetic radiative flow over a vertical permeable exponentially stretching sheet. AIMS Math. 2022. https://doi.org/10.3934/math.20221126.

    Article  Google Scholar 

  36. Poornima T, Sreenivasulu P, Souayeh B. Mathematical study of heat transfer in a stagnation flow of a hybrid nanofluid over a stretching/shrinking cylinder. J Eng Phys Thermophys A. 2022;95:1443–54.

    Article  CAS  Google Scholar 

  37. Alharbi KA, Ahmed AES, Sidi MO, Ahammad NA, Mohamed A, Shorbagy MAE, Bilal M, Marzouki R. Computational valuation of darcy ternary-hybrid nanofluid flow across an extending cylinder with induction effects. Micromachines. 2022. https://doi.org/10.3390/mi13040588.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Adnan, Abbas W, Fwaz MZB, Asogwa KK. Thermal efficiency of radiated tetra-hybrid nanofluid [(Al2O3-CuO-TiO2-Ag)/water]tetra under permeability effects over vertically aligned cylinder subject to magnetic field and combined convection. Sci Progr. 2023. https://doi.org/10.1177/00368504221149797.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shah Z, Rooman M, Shutaywi M. Computational analysis of radiative engine oil-based Prandtl-Eyring hybrid nanofluid flow with variable heat transfer using the Cattaneo-Christov heat flux model. R Soc Chem. 2023;13:3552–60.

    CAS  Google Scholar 

  40. Zafar M, Iqbal Z, Alyami MA, Alqahtani B, Yaseen MF, Khan U. Influence of suction and heat source on MHD stagnation point flow of ternary hybrid nanofluid over convectively heated stretching/shrinking cylinder. Adv Mech Eng. 2022;14:1–17.

    Google Scholar 

  41. Abbas W, Sayed ME, Adnan, Mutasem ZBF. Numerical investigation of non-transient comparative heat transport mechanism in ternary nanofluid under various physical constraints. AIMS Math. 2023;8:15932–49.

    Article  Google Scholar 

  42. Adnan A, Ashraf W. Heat transfer mechanism in ternary nanofluid between parallel plates channel using modified Hamilton-Crossers model and thermal radiation effects. Geoenergy Sci Eng. 2023. https://doi.org/10.1016/j.geoen.2023.211732.

    Article  Google Scholar 

  43. Adnan, Ashraf W. Heat transfer in tetra-nanofluid between converging/diverging channel under the influence of thermal radiations by using Galerkin finite element method. Waves Random Complex Media. 2023. https://doi.org/10.1080/17455030.2023.2171154.

    Article  Google Scholar 

  44. Bhatti MM, Sait SM, Ellahi R, Sheremet MA, Oztop H. Thermal analysis and entropy generation of magnetic Eyring-Powell nanofluid with viscous dissipation in a wavy asymmetric channel. Int J Numer Meth Heat Fluid Flow. 2022;33:1609–36.

    Article  Google Scholar 

  45. Adnan, Waqas A. Joule heating and heat generation/absorption effects on the heat transfer mechanism in ternary nanofluid containing different shape factors in stretchable converging/diverging Channel. Waves Random Complex Media. 2023. https://doi.org/10.1080/17455030.2023.2198038.

    Article  Google Scholar 

  46. Zhang L, Tariq N, Bhatti MM. Study of nonlinear quadratic convection on magnetized viscous fluid flow over a non-Darcian circular elastic surface via spectral approach. J Taibah Univ Sci. 2023. https://doi.org/10.1080/16583655.2023.2183702.

    Article  Google Scholar 

  47. Abdulkhaliq KAM, Adnan, Akgul A. Investigation of Williamson nanofluid in a convectively heated peristaltic channel and magnetic field via method of moments. AIP Adv. 2023. https://doi.org/10.1063/5.0141498.

    Article  Google Scholar 

  48. Rashidi MM, Mahariq I, Nazari MA, Accouche O, Bhatti MM. Comprehensive review on exergy analysis of shell and tube heat exchangers. J Therm Anal Calorim. 2022;147:12301–11.

    Article  CAS  Google Scholar 

  49. Nadeem A, Adnan, Sayed ME. Heat transport mechanism in glycerin-titania nanofluid over a permeable slanted surface by considering nanoparticles aggregation and Cattaneo Christov thermal flux. Sci Prog. 2023. https://doi.org/10.1177/00368504231180032.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sharma BK, Gandhi R, Abbas T, Bhatti MM. Magnetohydrodynamics hemodynamics hybrid nanofluid flow through inclined stenotic artery. Appl Math Mech. 2023;44:459–76.

    Article  Google Scholar 

  51. Maskeen MM, Zeeshan A, Mehmood OU, Hassan M. Heat transfer enhancement in hydromagnetic alumina–copper/water hybrid nanofluid flow over a stretching cylinder. J Therm Anal Calorim. 2019;138:1127–36.

    Article  CAS  Google Scholar 

  52. Waqas A, Adnan, Khan I, Shemseldin MA, Mousa AAA. Numerical energy storage efficiency of MWCNTs-propylene glycol by inducing thermal radiations and combined convection effects in the constitutive model. Front Chem. 2022. https://doi.org/10.3389/fchem.2022.879276.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under Grant Number RGP. 2/7/44.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan.

Ethics declarations

Conflict of interest

There is no competing interest regarding the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adnan, Abbas, W., Said, N.M. et al. Significance of coupled effects of resistive heating and perpendicular magnetic field on heat transfer process of mixed convective flow of ternary nanofluid. J Therm Anal Calorim 149, 879–892 (2024). https://doi.org/10.1007/s10973-023-12723-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12723-y

Keywords

Navigation