Skip to main content
Log in

Dynamics of Corcione nanoliquid on a convectively radiated surface using Al2O3 nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The significance of nanofluids prepared from different nanoparticles and base solvents for heat transfer applications cannot be sidestepped because of their large scale in applied thermal, chemical and mechanical engineering, etc. Therefore, the current model aims and designed to investigate the heating characteristics of Al2O3/H2O and the effective values of estimated using Corcione model. The key effects of thermal radiations and internal heating source are incorporated in the model equations. Then, the model transformed into a joint system of ODEs which reflects the flow over a Riga surface. The RK (Runge–Kutta) scheme used to compute the model results and analyzed comprehensively. It is scrutinized that the fluid motion is reduced when the \({\alpha }_{1}\) and \({\alpha }_{2}\) get higher values. It is good from engineering purposes where slow fluid movement is essential. Further, the modified Hartmann number highly affected the particles motion and is rapid for nanofluid due to higher viscous forces. Moreover, the heating source and thermal radiations boosted the nanoliquid temperature by considering Corcione model. Thus, desired able amount of the heat can be achieved by intensifying the radiation and heating factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52:789–93.

    Article  CAS  Google Scholar 

  2. Choi SUS , Eastman JA. Enhancing Thermal Conductivity of Fluids with Nanoparticles. ASME Int Mech Eng Congr Expo. 1995.

  3. Lee E, Tai CS, Hsu JP, Chen CJ. Electrophoresis in a Carreau fluid at arbitrary zeta potentials. Langmuir. 2004;20:7952–9.

    Article  CAS  PubMed  Google Scholar 

  4. Shehzad SA, Madhu M, Shashikumar NS, Gireesha BJ, Mahanthesh B. Thermal and entropy generation of non-Newtonian magneto-Carreau fluid flow in microchannel. J Therm Anal Calorim. 2021;143:2717–27.

    Article  CAS  Google Scholar 

  5. Kandasamy R, Muhaimin I, Mohamad R. Thermophoresis and Brownian motion effects on MHD boundary-layer flow of a nanofluid in the presence of thermal stratification due to solar radiation. Int J Mech Sci. 2013;70:146–54.

    Article  Google Scholar 

  6. Shah NA, Animasaun IL, Wakif A, Koriko OK, Sivaraj R, Adegbie KS, Abdelmalek Z, Vaidyaa H, Ijirimoye AF, Prasad KV. Significance of suction and dual stretching on the dynamics of various hybrid nanofluids: comparative analysis between type I and type II models. Phys Scr. 2020. https://doi.org/10.1088/1402-4896/aba8c6.

    Article  Google Scholar 

  7. Zaydan M, Khan U, Baleanu D, Sehaqui R, Animasaun IL. Significances of blowing and suction processes on the occurrence of thermo-magneto-convection phenomenon in a narrow nanofluidic medium: a revised Buongiorno’s nanofluid model. Case Stud Therm Eng. 2021. https://doi.org/10.1016/j.csite.2020.100726.

    Article  Google Scholar 

  8. Ramzan M, Yousaf F, Farooq M, Chung JD. Mixed convective viscoelastic nanofluid flow past a porous media with Soret–Dufour effects. Commun Theor Phys. 2016. https://doi.org/10.1088/0253-6102/66/1/133.

    Article  Google Scholar 

  9. Khan U, Adnan N, Ahmed ST, Mohyud-Din D, Baleanu IK, Nisar KS. A novel hybrid model for Cu–Al2O3/H2O nanofluid flow and heat transfer in convergent/divergent channels. Energies. 2020. https://doi.org/10.3390/en13071686.

    Article  Google Scholar 

  10. Mohyud-Din ST, Abdeljawad T, Nisar KS. Thermal transport investigation in magneto-radiative GO-MoS2/H2O-C2H6O2 hybrid nanofluid subject to Cattaneo–Christov model. Molecules. 2020. https://doi.org/10.3390/molecules25112592.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Umar K, Adnan DB, Nisar KS. Al2O3 and γAl2O3 nanomaterials based nanofluid models with surface diffusion: applications for thermal performance in multiple engineering systems and industries. Comput Mater Contin. 2020. https://doi.org/10.32604/cmc.2020.012326.

    Article  Google Scholar 

  12. Ashraf AW, Khan U, Al-Johani AS, Ahmed N, Mohyud-Din ST, Khan I, Andualem M. Impact of freezing temperature (Tfr) of Al2O3 and molecular diameter (H2O)d on thermal enhancement in magnetized and radiative nanofluid with mixed convection. Sci Rep. 2022. https://doi.org/10.1038/s41598-021-04587-9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. AlBaidani MM, Mishra NK, Alam MM, Zahrani AAA, Akgul A. Numerical analysis of magneto-radiated annular fin natural-convective heat transfer performance using advanced ternary nanofluid considering shape factors with heating source. Case Stud Therm Eng. 2023. https://doi.org/10.1016/j.csite.2023.102825.

    Article  Google Scholar 

  14. Abbas W, Fwaz MZB, Asogwa KK. Thermal efficiency of radiated tetra-hybrid nanofluid [(Al2O3-CuO-TiO2-Ag)/water]tetra under permeability effects over vertically aligned cylinder subject to magnetic field and combined convection. Sci Prog. 2023. https://doi.org/10.1177/00368504221149797.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Alharbi KAM. Thermal investigation and physiochemical interaction of H2O and C2H6O2 saturated by Al2O3 and γAl2O3 nanomaterials. J Appl Biomater Funct Mater. 2022. https://doi.org/10.1177/22808000221136483.

    Article  Google Scholar 

  16. Hayat T, Muhammad T, Alsaedi A, Ahmad B. Three-dimensional flow of nanofluid with Cattaneo–Christov double diffusion. Results Phys. 2016;6:897–903.

    Article  Google Scholar 

  17. Naseem A, Shafiq A, Zhao L, Farooq MU. Analytical investigation of third grad nanofluidic flow over a riga plate using Cattaneo–Christov model. Results Phys. 2018;9:961–9.

    Article  Google Scholar 

  18. Alqarni M, Waqas H, Alghamdi M, Muhammad T. Importance of bioconvection in 3D viscoelastic nanofluid flow due to exponentially stretching surface with nonlinear radiative heat transfer and variable thermal conductivity. J Therm Anal Calorim. 2021;147:4805–19.

    Article  Google Scholar 

  19. Elattar S, Helmi MM, Elkotb MA, Shorbagy MAE, Abdelrahman A, Bilal M, Ali A. Computational assessment of hybrid nanofluid flow with the influence of hall current and chemical reaction over a slender stretching surface. Alex Eng J. 2022;61(12):10319–31.

    Article  Google Scholar 

  20. Alhowaity A, Hamam H, Bilal M, Ali A. Numerical study of Williamson hybrid nanofluid flow with thermal characteristics past over an extending surface. Heat Transf. 2022. https://doi.org/10.1002/htj.22616.

    Article  Google Scholar 

  21. Bilal M, Alqarni MM, Mukdasai K, Ali A. Non-Fourier energy transmission in power-law hybrid nanofluid flow over a moving sheet. Sci Rep. 2022. https://doi.org/10.1038/s41598-022-14720-x.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jafar AB, Shafie S, Ullah I, Safdar R, Jamshed W, Pasha AA, Rahman MM, Hussain SM, Rehman A, Din ESM, Eid MR. Mixed convection flow of an electrically conducting viscoelastic fluid past a vertical nonlinearly stretching sheet. Sci Rep. 2022. https://doi.org/10.1038/s41598-022-18761-0.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Alqarni MS. Thermo-bioconvection flow of Walter’s B nanofluid over a Riga plate involving swimming motile microorganisms. AIMS Math. 2022;7(9):16231–48.

    Article  Google Scholar 

  24. Yousif MA, Ismael HF, Abbas T, Ellahi R. Numerical study of momentum and heat transfer of MHD carreau nanofluid over an exponentially stretched plate with internal heat source/sink and radiatION. Heat Transf Res. 2019;50(7):649–58.

    Article  Google Scholar 

  25. Shamshuddin MD, Oudina FM, Salawu SO, Shafiq A. Thermophoretic movement transport of reactive Casson nanofluid on Riga plate surface with nonlinear thermal radiation and uneven heat sink/source. J Nanofluids. 2022;11(6):833–44.

    Article  Google Scholar 

  26. Sharma RP, Jha AK, Gaur PK, Mishra SR. Nanofluid motion past a shrinking sheet in porous media under the impact of radiation and heat source/sink. Appl Mech Eng. 2019;24(4):183–99.

    CAS  Google Scholar 

  27. Tahir M, Naz A, Imran M, Waqas H, Akgul A, Shanak H, Jarrar R, Asad J. Activation energy impact on unsteady Bio-convection nanomaterial flow over porous surface. AIMS Math. 2022;7(11):19822–45.

    Article  Google Scholar 

  28. Adnan. Heat transfer inspection in [(ZnO-MWCNTs)/water-EG(50:50)]hnf with thermal radiation ray and convective condition over a Riga surface. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2119300.

    Article  Google Scholar 

  29. Guedri K, Raizah Z, Eldin ET, Shorbagy MAE, Abbas W, Khan W. Thermal mechanism in magneto radiated [(Al2O3-Fe3O4)/blood]hnf over a 3D surface: applications in biomedical engineering. Front Chem. 2022. https://doi.org/10.3389/fchem.2022.960349.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ashraf W, Yassen MF, Jamshed W. Applied heat transfer modeling in conventional hybrid (Al2O3-CuO)/C2H6O2 and modified-hybrid nanofluids (Al2O3-CuO-Fe3O4)/C2H6O2 between slippery channel by using least square method (LSM). AIMS Math. 2023;8(2):4321–41.

    Article  Google Scholar 

  31. Adnan, Mansour FY, Khalid AM, Mutasem MBF. Numerical heat performance of TiO2/Glycerin under nanoparticles aggregation and nonlinear radiative heat flux in dilating/squeezing channel. Case Stud Therm Eng. 2023. https://doi.org/10.1016/j.csite.2022.102568.

    Article  Google Scholar 

  32. Ahmad R, Mustafa M, Turkyilmazoglu M. Buoyancy effects on nanofluid flow past a convectively heated vertical Riga-plate: a numerical study. Int J Heat Mass Transf. 2017;11:827–35.

    Article  Google Scholar 

  33. Tarakaramu N, Sivakumar N, Narayana PVS, Sivajothi R. Viscous dissipation and joule heating effects on 3D magnetohydrodynamics flow of Williamson nanofluid in a porous medium over a stretching surface with melting condition. ASME Open J Eng. 2022. https://doi.org/10.1115/1.4055183.

    Article  Google Scholar 

  34. Rashidi MM, Ganesh NV, Hakeem AKA, Ganga B. Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J Mol Liq. 2014;198:234–8.

    Article  CAS  Google Scholar 

  35. Rawat SK, Upreti H, Kumar M. Comparative study of mixed convective MHD Cu-water nanofluid flow over a cone and wedge using modified Buongiorno’s model in presence of thermal radiation and chemical reaction via Cattaneo–Christov double diffusion model. J Appl Comput Mech. 2021;7(3):1383–402.

    Google Scholar 

  36. Karthik TS, Loganathan K, Shankar AN, Carmichael MJ, Mohan A, Kaabar MKA, Kayikca S. Zero and nonzero mass flux effects of bioconvective viscoelastic nanofluid over a 3D Riga surface with the swimming of gyrotactic microorganisms. Adv Math Phys. 2021. https://doi.org/10.1155/2021/9914134.

    Article  Google Scholar 

  37. Ramzan M, Shah Z, Kumam P, Khan W, Watthaya W, Kumam W. Bidirectional flow of MHD nanofluid with hall current and Cattaneo–Christove heat flux toward the stretching surface. PLoS ONE. 2022. https://doi.org/10.1371/journal.pone.0264208.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Prabakaran R, Eswaramoorthi S, Loganathan K, Gyeltshen S. Thermal radiation and viscous dissipation impacts of water and kerosene-based carbon nanotubes over a heated Riga sheet. J Nanomater. 2022. https://doi.org/10.1155/2022/1865763.

    Article  Google Scholar 

  39. Alhowaity A, Mehmood Y, Hamam H, Bilal M. Radiative flow of nanofluid past a convected vertical Riga plate with activation energy and nonlinear heat generation. J Process Mech Eng. 2022. https://doi.org/10.1177/09544089221126439.

    Article  Google Scholar 

  40. Madhu M, Kishan N. Finite element analysis of MHD viscoelastic nanofluid flow over astretchingsheet with radiation. Procedia Eng. 2015;127:432–9.

    Article  Google Scholar 

  41. Ullah MZ, Asma M. Thermal transport of bio-convection 3D viscoelastic nanofluid flow by a convectively Riga plate with gyrotactic motile microorganisms. Waves Random Complex Media. 2021. https://doi.org/10.1080/17455030.2021.2000673.

    Article  Google Scholar 

  42. Qureshi MA. Irreversibility analysis of electromagnetic hybrid nanofluid over a stretchable surface with Cattaneo–Christov heat flux model: finite element approach. Res Sq. 2022. https://doi.org/10.21203/rs.3.rs-2249508/v1.

    Article  Google Scholar 

  43. Alsabery AI, Sheremet MA, Chamkha AJ, Hashim I. MHD convective heat transfer in a discretely heated square cavity with conductive inner block using two-phase nanofluid model. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-25749-2.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Waqas A, Khan I, Andualem M. Thermal transport investigation and shear drag at solid–liquid interface of modified permeable radiative-SRID subject to Darcy–Forchheimer fluid flow composed by γ-nanomaterial. Sci Rep. 2022. https://doi.org/10.1038/s41598-022-07045-2.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ashraf W, Alghtani AH, Khan I. Thermal transport in radiative nanofluids by considering the influence of convective heat condition. J Nanomater. 2022. https://doi.org/10.1155/2022/1854381.

    Article  Google Scholar 

  46. Waqas A. Numerical thermal featuring in gAl2O3-C2H6O2 nanofluid under the influence of thermal radiation and convective heat condition by inducing novel effects of effective Prandtl number model (EPNM). Adv Mech Eng. 2022;14(6):1–11.

    Google Scholar 

  47. Ghoneim ME, Khan Z, Zuhra S, Ali A, Eldin ET. Numerical solution of Rosseland’s radiative and magnetic field effects for Cu-kerosene and Cu-water nanofluids of Darcy–Forchheimer flow through squeezing motion. Alex Eng J. 2022. https://doi.org/10.1016/j.aej.2022.08.034.

    Article  Google Scholar 

  48. Souayeh B, Abro KA, Siyal A, Hdhiri N, Hammami F, Al-Shaeli M, Alnaim N, Raju SSK, Alam MW, Alsheddi T. Role of copper and alumina for heat transfer in hybrid nanofluid by using Fourier sine transform. Sci Rep. 2022. https://doi.org/10.1038/s41598-022-14936-x.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Souayeh B, Abro KA, Alfannakh H, Nuwairan MA, Yasin A. Application of Fourier sine transform to carbon nanotubes suspended in ethylene glycol for the enhancement of heat transfer. Energies. 2022. https://doi.org/10.3390/en15031200.

    Article  Google Scholar 

  50. Amir M, Ali Q, Abro KA, Raza A. Characterization nanoparticles via Newtonian heating for fractionalized hybrid nanofluid in a channel flow. J Nanofluids. 2023. https://doi.org/10.1166/jon.2023.1982.

    Article  Google Scholar 

  51. Qasim A, Yassen MF, Asiri SA, Pasha AA, Abro KA. Role of viscoelasticity on thermoelectromechanical system subjected to annular regions of cylinders in the existence of a uniform inclined magnetic field. Eur Phys J Plus. 2022. https://doi.org/10.1140/epjp/s13360-022-02951-w.

    Article  Google Scholar 

  52. Awan AU, Riaz S, Ashfaq M, Abro KA. A scientific report of singular kernel on the rate-type fluid subject to the mixed convection flow. Soft Comput. 2022;26:4575–85.

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/16/44.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, N.K., Adnan, Sarfraz, G. et al. Dynamics of Corcione nanoliquid on a convectively radiated surface using Al2O3 nanoparticles. J Therm Anal Calorim 148, 11303–11314 (2023). https://doi.org/10.1007/s10973-023-12448-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12448-y

Keywords

Navigation