Skip to main content
Log in

An effect of velocity slip and MHD on Hiemenz stagnation flow of ternary nanofluid with heat and mass transfer

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study examines the effect of the Hiemenz stagnation point and magnetic field on the ternary nanofluid flow on the permeable stretching/shrinking surface. Ternary nanofluid composites are formed by dissolving silicon dioxide (SiO2), aluminum oxide (Al2O3), and titanium dioxide (TiO2) in base fluid water (H2O), and applying these nanoparticles to the water (base fluid) will enhance heat transfer. Furthermore, it studied the heat transmission process using variable thermal conductivity of the thermal radiation. It is noted that there is a lack of study on ternary nanofluids in the circumstances of the Hiemenz stagnation point and radiation with porous media. The novelty of the present problem is to examine the influence of magnetic field and radiation over ternary nanofluid flow. Governing equations of velocity and temperature are converted to a set of nonlinear ordinary differential equations via suitable transformations, and the obtained equations are solved using the boundary conditions, energy equation with radiation effect solved analytically by using error function and hypergeometric function. Significant physical characteristics like mass transpiration, Schmidt number, magnetic parameter, and thermal radiations, volume fraction can be discussed using the graphical analysis. The outcomes of the investigation reveal that increasing the magnetic field enhances temperature and decreases the momentum of the fluid flow. Increasing the volume fraction and thermal radiation increases the thermal boundary layer, and velocity decreases by increasing in inverse Darcy parameter, ternary nanofluids significantly increase thermal conductivity and can be used as coolants for radiators due to their improved thermal performance. Finally, adding a magnetic field causes a moving conductive fluid to conduct current, which in turn creates forces on the fluid. This is particularly useful for green and sustainable development in a variety of engineering applications as well as biomedical disciplines like medication delivery and energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

a :

Acceleration rate (s−1)

\(A_{1} ,A_{2} ,A_{3} ,A_{4} ,A_{5}\) :

Constants (–)

\(b\) :

Slip \(\left( { = D\sqrt {\frac{U}{\nu }} } \right)\) (–)

C :

Concentration (–)

C p :

Specific heat coefficient (JK−1 kg−1)

\(C^{*}\) :

Elasticity strength parameter \(\left( { = \frac{p}{U}} \right)\) (–)

d :

Stretching/shrinking parameter (–)

\(Da^{ - 1}\) :

: Inverse Darcy number \(\left( { = \frac{{\nu_{{\text{f}}} }}{{k^{*} a}}} \right)\) (m−2)

D B :

Mass diffusivity (–)

\(f\) :

Velocity function fluid phase (ms−1)

h :

Constant (–)

j :

Constant (–)

k :

Permeability of porous medium (m2)

m :

Constant ()

n :

Constant ()

N r :

Radiation \(\left( { = \frac{{16\sigma * T_{\infty }^{3} }}{{3k * \kappa_{{\text{f}}} }}} \right)\) (K)

P :

Constant (–)

Pr:

Prandtl number \(\left( { = \frac{{\nu_\mathrm{f} }}{{\alpha_\mathrm{f} }}} \right)\) (Kg m−3)

\(q_{{\text{r}}}\) :

Radiative heat flux \(\left( { = - \frac{4\sigma *}{{3k*}}\frac{{\partial T^{4} }}{\partial y}} \right)\) (Wm−2)

Sc:

Schmidt number \(\left( { = \frac{{\nu_{{\text{f}}} }}{D}} \right)\) (–)

\(T_{{\text{w}}}\) :

Surface temperature (K)

T :

Fluid temperature (K)

\(T_{\infty }\) :

Ambient temperature (K)

\(u,v\) :

x, y Axis momentum fluid phase (ms−1)

u w :

Velocity (ms−1)

v w :

Wall velocity \(v_{{\text{w}}} = - \left( {\sqrt {a\rho } } \right)\Lambda \phi_{\eta } \left( 0 \right).\) (ms−1)

x :

Coordinate along the sheet (m)

y :

Coordinate normal to the sheet (m)

\(\alpha\) :

Acceleration rate (\({\text{ms}}^{ - 1}\))

\(\beta\) :

Solution value (m)

\(\eta\) :

Similarity variable (–)

\(\gamma\) :

Heat coefficient \(\left( { = \frac{{c_{{\text{m}}} }}{{c_{{\text{p}}} }}} \right)\) (K)

\(\kappa_\mathrm{tnf}\) :

Thermal conductivity \(\left( {{\text{Wm}}^{ - 1} \;{\text{K}}^{ - 1} } \right)\)

\(\kappa^{*}\) :

Absorption coefficient \(\left( {{\text{Wm}}^{ - 1} \;{\text{K}}^{ - 1} } \right)\)

\(\mu_\mathrm{tnf}\) :

Dynamic viscosity \(\left( {{\text{Kg}}\;({\text{ms}})^{ - 1} } \right)\)

\(\nu_\mathrm{tnf}\) :

Kinematic viscosity \(\left( { = \frac{{\mu_{{{\text{tnf}}}} }}{{\rho_{{{\text{tnf}}}} }}} \right)\;\left( {{\text{m}}^{2} {\text{s}}^{ - 1} } \right)\)

\(\rho_\mathrm{tnf}\) :

Fluid density (kg m3)

\(\left( {\rho C_{\text{p}} } \right)_\mathrm{tnf}\) :

Heat capacitance of fluid (JKgK1)

\(\psi\) :

Stream function (Kg (ms)1)

\(\sigma^{*}\) :

Stephen Boltzmann constant \(\left( {{\text{Wm}}^{ - 2} \;{\text{K}}^{ - 4} } \right)\)

\(\xi\) :

Variable for concentration (–)

\(\phi\) :

Volume fraction (–)

\(\varphi\) :

Concentration for fluid phase (–)

θ :

Temperature for fluid phase (K)

HNF:

Hybrid nanofluid (–)

TNF:

Ternary nanofluid (–)

ODE:

Ordinary differential equation (–)

PDE:

Partial differential equation (–)

MHD:

Magnetohydrodynamic (–)

B.Cs:

Boundary conditions (–)

Sc:

Schmidt number (–)

References

  1. Weidman P. Hiemenz stagnation-point flow impinging on a uniformly rotating plate. Eur J Mech B Fluids. 2019;78:169–73. https://doi.org/10.1016/j.euromechflu.2019.06.008.

    Article  MathSciNet  Google Scholar 

  2. Lok YY, Pop I. Non-orthogonal stagnation-point flow of a micropolar fluid. Int J Eng Sci. 2007;45(1):173–84. https://doi.org/10.1016/j.ijengsci.2006.04.016.

    Article  MathSciNet  CAS  Google Scholar 

  3. Wang CY. Similarity stagnation point solutions of the Navier-Stokes equations – review and extension. Eur J Mech B Fluids. 2008;27(6):678–83. https://doi.org/10.1016/j.euromechflu.2007.11.002.

    Article  MathSciNet  CAS  Google Scholar 

  4. Rosali H, Ishak A, Pop I. Stagnation point flow and heat transfer over a stretching/shrinking sheet in a porous medium. Int Commun Heat Mass Transf. 2011;38(8):1029–32. https://doi.org/10.1016/j.icheatmasstransfer.2011.04.031.

    Article  Google Scholar 

  5. Vishalakshi B, Mahabaleshwar US, Pérez LM, Manca O. Hiemenz stagnation point flow with computational modeling of variety of boundary conditions. J Magn Magn Mater. 2023;575: 170747. https://doi.org/10.1016/j.jmmm.2023.170747.

    Article  CAS  Google Scholar 

  6. Bhattacharyya K, Vajravelu K. Stagnation-point flow and heat transfer over an exponentially shrinking sheet. Commun Nonlinear Sci Numer Simul. 2012;17(7):2728–34. https://doi.org/10.1016/j.cnsns.2011.11.011.

    Article  Google Scholar 

  7. Si Z, Hou A, Wang Y. A consistent projection finite element method for the non-stationary incompressible thermally coupled MHD equations. Commun Nonlinear Sci Numer Simul. 2023;126: 107496. https://doi.org/10.1016/j.cnsns.2023.107496.

    Article  MathSciNet  Google Scholar 

  8. Chen W, Wu K, Xiong T. High order asymptotic preserving finite difference WENO schemes with constrained transport for MHD equations in all sonic Mach numbers. J Comput Phys. 2023;488: 112240. https://doi.org/10.1016/j.jcp.2023.112240.

    Article  MathSciNet  Google Scholar 

  9. Sarris IE, Zikos GK, Grecos AP, Vlachos NS. On the limits of validity of the low magnetic Reynolds number approximation in MHD natural-convection heat transfer. Numer Heat Transf Part B Fundam. 2006;50(2):157–80.

    Article  CAS  Google Scholar 

  10. Li X, Su H, Zhang X. A decoupled, unconditionally energy-stable and conservative finite element algorithm for a constrained transport model of the incompressible MHD equations. Appl Math Lett. 2024;149: 108905. https://doi.org/10.1016/j.aml.2023.108905.

    Article  MathSciNet  Google Scholar 

  11. Chandrasekhar S. The invariant theory of isotropic turbulence in magneto-hydrodynamics. Proc R Soc Lond Ser Math Phys Sci. 1997;204(1079):435–49. https://doi.org/10.1098/rspa.1951.0001.

    Article  MathSciNet  Google Scholar 

  12. Maranna T, Sachhin SM, Mahabaleshwar US, Hatami M. Impact of Navier’s slip and MHD on laminar boundary layer flow with heat transfer for non-Newtonian nanofluid over a porous media. Sci Rep. 2023. https://doi.org/10.1038/s41598-023-39153-y.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mahabaleshwar US, Anusha T, Sakanaka PH, Bhattacharyya S. Impact of inclined Lorentz force and Schmidt number on chemically reactive Newtonian fluid flow on a stretchable surface when Stefan blowing and thermal radiation are significant. Arab J Sci Eng. 2021;46(12):12427–43. https://doi.org/10.1007/s13369-021-05976-y.

    Article  CAS  Google Scholar 

  14. Gromke C, Blocken B. Influence of avenue-trees on air quality at the urban neighborhood scale. Part I: quality assurance studies and turbulent Schmidt number analysis for RANS CFD simulations. Environ Pollut. 2015;196:214–23. https://doi.org/10.1016/j.envpol.2014.10.016.

    Article  CAS  PubMed  Google Scholar 

  15. Calmet I, Magnaudet J. Large-eddy simulation of high-Schmidt number mass transfer in a turbulent channel flow. Phys Fluids. 1997;9(2):438–55. https://doi.org/10.1063/1.869138.

    Article  CAS  Google Scholar 

  16. Gualtieri C, Angeloudis A, Bombardelli F, Jha S, Stoesser T. On the values for the turbulent Schmidt number in environmental flows. 2017. Fluids. https://doi.org/10.3390/fluids2020017.

  17. Yeung PK, Xu S, Sreenivasan KR. Schmidt number effects on turbulent transport with uniform mean scalar gradient. Phys Fluids. 2002;14(12):4178–91. https://doi.org/10.1063/1.1517298.

    Article  CAS  Google Scholar 

  18. Chwang AT, Chan AT. Interaction between porous media and wave motion. Annu Rev Fluid Mech. 1998;30(1):53–84.

    Article  MathSciNet  Google Scholar 

  19. Mahmud MN, Siri Z, Vélez JA, Pérez LM, Laroze D. Chaotic convection in an Oldroyd viscoelastic fluid in a saturated porous medium with feedback control. Chaos Interdiscip J Nonlinear Sci. 2020;30(7):073109.

    Article  MathSciNet  CAS  Google Scholar 

  20. Gao J, Peng L, Yao Z. Local-in-time well-posedness theory for the inhomogeneous MHD boundary layer equations without resistivity in lower regular Sobolev space. J Differ Equ. 2023;374:446–96. https://doi.org/10.1016/j.jde.2023.07.036.

    Article  MathSciNet  Google Scholar 

  21. Tao Z, et al. Real-time MHD feedback control system in Keda Torus eXperiment. Fusion Eng Des. 2023;195: 113968. https://doi.org/10.1016/j.fusengdes.2023.113968.

    Article  CAS  Google Scholar 

  22. Rahman M, Waheed H, Turkyilmazoglu M, Siddiqui MS. Darcy–Brinkman porous medium for dusty fluid flow with steady boundary layer flow in the presence of slip effect. Int J Mod Phys B. 2023. https://doi.org/10.1142/S0217979224501522.

    Article  Google Scholar 

  23. Kenno T, Takahashi K, Sakai A. Detection of thermal radiation sensing of heat flux and recovery of waste heat by the transverse thermos electric effect. J Electron Mater. 2014;43:13–22.

    Google Scholar 

  24. Radu A, Kirakosyan AA, Laroze D, Baghramyan HM, Barseghyan MG. Electronic and intraband optical properties of single quantum rings under intense laser field radiation. J Appl Phys. 2014;116:093101.

    Article  Google Scholar 

  25. Wang S, Zhang H, Jiang X. Parameter estimation for unsteady MHD oscillatory free convective flow of generalized second-grade fluid with hall effects and thermal radiation effects. Int J Heat Mass Transf. 2024;219: 124805. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124805.

    Article  Google Scholar 

  26. Martyushev SG, Sheremet MA. Conjugate natural convection combined with surface thermal radiation in a three-dimensional enclosure with a heat source. Int J Heat Mass Transf. 2014;73:340–53.

    Article  Google Scholar 

  27. Turkyilmazoglu M, Pop I. Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect. Int J Heat Mass Transf. 2013;59:167–71.

    Article  CAS  Google Scholar 

  28. Mahabaleshwar US, Sneha KN, Souayeh B. Flow due to a porous stretching/shrinking sheet with thermal radiation and mass transpiration. Heat Transf. 2022;51(6):5441–63.

    Article  Google Scholar 

  29. Adun H, Kavaz D, Dagbasi M. Review of ternary hybrid nanofluid: Synthesis, stability, thermophysical properties, heat transfer applications, and environmental effects. J Clean Prod. 2021;328: 129525. https://doi.org/10.1016/j.jclepro.2021.129525.

    Article  CAS  Google Scholar 

  30. Sarwar N, Jahangir S, Asjad M, Eldin S. Application of ternary nanoparticles in the heat transfer of an MHD non-Newtonian fluid flow. Micromachines. 2022;13:2149. https://doi.org/10.3390/mi13122149.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Takabi B, Salehi S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv Mech Eng. 2014;6: 147059. https://doi.org/10.1155/2014/147059.

    Article  CAS  Google Scholar 

  32. Crane LJ. Flow past a stretching plate. Z Für Angew Math Phys ZAMP. 1970;21(4):645–7. https://doi.org/10.1007/BF01587695.

    Article  Google Scholar 

  33. Kalidasan K, Velkennedy R, RajeshKanna P. Laminar natural convection of Copper-Titania/water hybrid nanofluid in an open-ended C-shaped enclosure with an isothermal block. J Mol Liq. 2017;246:251–8. https://doi.org/10.1016/j.molliq.2017.09.071.

    Article  CAS  Google Scholar 

  34. Usafzai WK, Aly EH. Heimenz flow with heat transfer in a slip condition micropolar fluid model: exact solutions. Int Commun Heat Mass Transf. 2023;144: 106775. https://doi.org/10.1016/j.icheatmasstransfer.2023.106775.

    Article  Google Scholar 

  35. Salah F, Sidahmed AOM, Viswanathan KK. Chemical MHD Hiemenz flow over a nonlinear stretching sheet and Brownian motion effects of nanoparticles through a porous medium with radiation effect. Math Comput Appl. 2023. https://doi.org/10.3390/mca28010021.

    Article  Google Scholar 

  36. Li S, et al. Coupled heat and mass transfer mathematical study for lubricated non-Newtonian nanomaterial conveying oblique stagnation point flow: a comparison of viscous and viscoelastic nanofluid model. Open Phys. 2023. https://doi.org/10.1515/phys-2023-0141.

    Article  Google Scholar 

  37. Vijay N, Sharma K. Dynamics of stagnation point flow of Maxwell nanofluid with combined heat and mass transfer effects: a numerical investigation. Int Commun Heat Mass Transf. 2023;141: 106545. https://doi.org/10.1016/j.icheatmasstransfer.2022.106545.

    Article  CAS  Google Scholar 

  38. Usafzai WK, Aly EH, Pop I. Hiemenz stagnation point flow of a second-order micropolar slip flow with heat transfer. Int J Numerical Methods Heat Fluid Flow. 2023. https://doi.org/10.1108/HFF-10-2023-0633.

    Article  Google Scholar 

  39. Vishalakshi AB, Vanitha GP, Mahabaleshwar US, Botmart T, Oztop HF, Abu-Hamdeh N. Hiemenz stagnation point flow of a ternary nanofluid and heat transfer due to porous stretching/shrinking sheet with Brinkman model. J Porous Media. 2024. https://doi.org/10.1615/JPorMedia.2023047575.

    Article  Google Scholar 

  40. Ibrahim SM, Kumar PV, Lorenzini G Influence of thermophoresis and Brownian motion of nanoparticles on radiative chemically-reacting MHD Hiemenz flow over a nonlinear stretching sheet with heat generation. | fluid dynamics materials processing | EBSCOhost. 2024. Accessed 03 Jan 2024. https://openurl.ebsco.com/contentitem/doi:10.32604%2Ffdmp.2022.019796?sid=ebsco:plink:crawler&id=ebsco:doi:10.32604%2Ffdmp.2022.019796

  41. Sachhin SM, Mahabaleshwar US, Huang HN, Sunden B, Zeidan D. An influence of temperature jumps and Navier’s slip-on hybrid nanofluid flow over a permeable stretching/shrinking sheet with heat transfer and inclined MHD. Nanotechnology. 2023;35(11): 115401. https://doi.org/10.1088/1361-6528/ad13be.

    Article  Google Scholar 

  42. Ram MS, Spandana K, Shamshuddin MD. Numerical simulation and modeling of steady convective Hiemenz flow of a dissipative micropolar fluid through the stretching sheet. Int J Ambient Energy. 2023;44(1):1948–58. https://doi.org/10.1080/01430750.2023.2199030.

    Article  Google Scholar 

  43. Kho YB, Jusoh R, Sheremet M, Salleh MZ, Ismail Z, Zainuddin N. Unsteady Hiemenz flow of Cu-SiO2 hybrid nanofluid with heat generation/absorption. J Adv Res Fluid Mech Therm Sci. 2023. https://doi.org/10.3793/arfmts.110.2.95107.

    Article  Google Scholar 

  44. Dero S, et al. Multiple solutions of Hiemenz flow of CNTs hybrid base C2H6O2+H2O nanofluid and heat transfer over stretching/shrinking surface: stability analysis. Case Stud Therm Eng. 2023;49: 103190. https://doi.org/10.1016/j.csite.2023.103190.

    Article  Google Scholar 

  45. Pavlov KB. magnetohydrodynamic flow of incompressible viscous fluid caused by of a surface. M Gidrodinamika. 1974;4:146–7.

    Google Scholar 

  46. Khan U, Zaib A, Ishak A, Roy NC, Bakar SA, Muhammad T, Aty AHA, Yahia IS. Exact solutions for MHD axisymmetric hybrid nanofluid flow and heat transfer over a permeable non-linear radially shrinking/stretching surface with mutual impacts of thermal radiation. Eur Phys J Special Topics. 2022;231:1195–204.

    Article  CAS  Google Scholar 

  47. Biswas N, Mahapatra PS, Manna NK. Thermal management of heating element in a ventilated enclosure. Int Commun Heat Mass Transf. 2015;66:84–92.

    Article  Google Scholar 

  48. Biswas N, Mahapatra PS, Manna NK. Mixed convection heat transfer in a grooved channel with injection. Numer Heat Transf A. 2015;68:663–85.

    Article  CAS  Google Scholar 

  49. Chakravarty A, Biswas N, Ghosh K, Manna NK, Mukhopadhyay A, Sen S. Impact of side injection on heat removal from truncated conical heat-generating porous bed: thermal non-equilibrium approach. J Therm Anal Calorim. 2021;143:3741–60.

    Article  CAS  Google Scholar 

  50. Biswas N, Manna NK, Datta P, Mahapatra PS. Analysis of heat transfer and pumping power for bottom-heated porous cavity saturated with Cu-water nanofluid. Powder Technol. 2018;326:356–69.

    Article  CAS  Google Scholar 

  51. Biswas N, Manna NK, Mandal DK, Benim AC, Datta A. Role of aspiration to enhance MHD convection in protruded heater cavity. Prog Comput Fluid Dyn An Int J. 2020;20:363.

    Article  MathSciNet  Google Scholar 

  52. Biswas N, Manna NK. Enhanced convective heat transfer in lid-driven porous cavity with aspiration. Int J Heat Mass Transf. 2017;114:430–52.

    Article  Google Scholar 

  53. Biswas N, Chamkha AJ, Manna NK. Energy-saving method of heat transfer enhancement during magneto-thermal convection in typical thermal cavities adopting aspiration. SN Appl Sci. 2020;2:1911.

    Article  CAS  Google Scholar 

  54. Zeidan D, Zhang LT, Goncalves E. High-resolution simulations for aerogel using two-phase flow equations and Godunov methods. Int J Appl Mech. 2020;12(05):2050049. https://doi.org/10.1142/S1758825120500490.

    Article  Google Scholar 

  55. Zeidan D, Bähr P, Farber P, Gräbel J, Ueberholz P. Numerical investigation of a mixture two-phase flow model in two-dimensional space. Comput Fluids. 2019;181:90–106. https://doi.org/10.1016/j.compfluid.2018.12.013.

    Article  MathSciNet  Google Scholar 

  56. Goncalvès E, Zeidan D. Numerical simulation of unsteady cavitation in liquid hydrogen flows. Int J Eng Syst Model Simul. 2017;9(1):41–52. https://doi.org/10.1504/IJESMS.2017.081736.

    Article  Google Scholar 

  57. Goncalves E, Hoarau Y, Zeidan D. Simulation of shock-induced bubble collapse using a four-equation model. Shock Waves. 2019;29(1):221–34. https://doi.org/10.1007/s00193-018-0809-1.

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the Grant NRF2022-R1A2C2002799 of the National Research Foundation of Korea. The support provided by Davangere University, Davangere, India, and the German Jordanian University, Amman, Jordan, is highly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

SMS contributed to the conceptualization, data curation, investigation, methodology, writing—original draft; USM was involved in the conceptualization, investigation, methodology, supervision, writing, review, and editing; DZ assisted in writing, review, editing, supervision, methodology; SWJ performed writing, review, and editing, funding acquisition; OM contributed to writing, review, and editing.

Corresponding author

Correspondence to Dia Zeidan.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachhin, S.M., Mahabaleshwar, U.S., Zeidan, D. et al. An effect of velocity slip and MHD on Hiemenz stagnation flow of ternary nanofluid with heat and mass transfer. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-12962-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-12962-7

Keywords

Navigation