Skip to main content

Advertisement

Log in

Bio-inspired construction of hydrophobic, bio-based and halogen-free flame-retardant strategy for silicone rubber

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Owing to the unsustainability of traditional petroleum-based char-forming agents, cyclodextrin (CD) as the bio-based polyhydroxy compounds has been employed to construct the intumescent flame-retardant system with ammonium polyphosphate (APP) for flammable and fire-hazardous silicone rubber (SR). On the basis of this, the poor compatibility and water resistance of SR composites have been improved by separately introducing the bio-inspired hydrophobic structure for CD and APP. The results have implied that limiting oxygen index (LOI) and vertical combustion of SR composites with 40 phr total fillers loadings could reach 30.7% and UL-94 V-0 rating. Moreover, the water soaking tests have verified that the flame retardancy of SR composites could be maintained under hot aqueous medium. Based on thermogravimetric analysis (TGA), the reason for elevated flame retardancy of SR composites can be interpreted by good thermal stability and char-forming ability via the interaction of modified APP and CD. With the aid of analyzing combustion residues in details, the synergistic flame-retardant mechanism can be mainly elaborated as the gas phase dilution of inert gases and the condensed phase barrier of dense expanded carbon layer. Furthermore, the retained mechanical properties of SR composites via hydrophobic modification are beneficial to improve its application value. Thus, this paper has open up a novel, green and effective route for overcoming the crucial flame retardancy problem of SR materials in real-life applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1
Fig. 13

Similar content being viewed by others

References

  1. Fang S, Hu Y, Song L, Zhan J, He Q. Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers fame retardant silicone rubber. J Mater Sci. 2008;43(3):1057–62. https://doi.org/10.1007/s10853-007-2241-2.

    Article  CAS  Google Scholar 

  2. Wang X, Dou W. Preparation of graphite oxide (GO) and the thermal stability of silicone rubber/GO nanocomposites. Thermochim Acta. 2012;529:25–8. https://doi.org/10.1016/j.tca.2011.11.016.

    Article  CAS  Google Scholar 

  3. Chai H, Tang X, Ni M, Chen F, Zhang Y, Chen D, et al. Preparation and properties of flexible flame-retardant neutron shielding material based on methyl vinyl silicone rubber. J Nucl Mater. 2015;464:210–5. https://doi.org/10.1016/j.jnucmat.2015.04.048.

    Article  CAS  Google Scholar 

  4. Li L, Qian Y, Jiao C. Synergistic fame retardant effect of melamine in ethylene-vinyl acetate/layered double hydroxides composites. J Therm Anal Calorim. 2013;114(1):45–55. https://doi.org/10.1007/s10973-012-2808-2.

    Article  CAS  Google Scholar 

  5. Karambar S, Tenbohlen S. Compatibility study of silicone rubber and mineral oil. Energies. 2021;14(18):5899. https://doi.org/10.3390/en14185899.

    Article  CAS  Google Scholar 

  6. Huang P, Xia Z, Cui S. 3D printing of carbon fiber-filled conductive silicon rubber. Mater Design. 2018;142:11–21. https://doi.org/10.1016/j.matdes.2017.12.051.

    Article  CAS  Google Scholar 

  7. Qiu J, Lai X, Li H, Zeng X, Wu Y. Fabrication of polymethylphenylsiloxane decorated C60 via π-π stacking interaction for reducing the flammability of silicone rubber. Mater Lett. 2018;229:85–8. https://doi.org/10.1016/j.matlet.2018.06.120.

    Article  CAS  Google Scholar 

  8. Gu J, Meng X, Tang Y, Li Y, Zhuang Q, Kong J. Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities. Compos Part A-Appl S. 2017;92:27–32. https://doi.org/10.1016/j.compositesa.2016.11.002.

    Article  CAS  Google Scholar 

  9. Liu B, Gao X, Zhao Y, Dai L, Xie Z, Zhang Z. 9,10-Dihydro-9-oxa-10- phosphaphenanthrene 10-oxide-based oligosiloxane as a promising damping additive for methyl vinyl silicone rubber (VMQ). J Mater Sci. 2017;52:8603–17. https://doi.org/10.1007/s10853-017-1085-7.

    Article  CAS  Google Scholar 

  10. Hong L, Hu X. Mechanical and flame retardant properties and microstructure of expandable graphite/silicone rubber composites. J Macromol Sci B. 2016;55(2):175–87. https://doi.org/10.1080/00222348.2015.1138029.

    Article  CAS  Google Scholar 

  11. Qiu J, Wu T, Qu J. Fabrication of iron oxide nanoparticle decorated boron nitride nanosheet for flame-retarding silicone rubber. Mater Lett. 2021;283:12871. https://doi.org/10.1016/j.matlet.2020.128712.

    Article  CAS  Google Scholar 

  12. Zhou C, Wang J, Li J, Shi J. Thermal aging properties of flame retardant silicone rubber based on melamine cyanurate. J Appl Polym Sci. 2021;138(9):49919. https://doi.org/10.1002/app.49919.

    Article  CAS  Google Scholar 

  13. Lou F, Yan W, Guo W, Wei T, Li Q. Preparation and properties of ceramifiable flame-retarded silicone rubber composites. J Therm Anal Calorim. 2017;130(2):813–21. https://doi.org/10.1007/s10973-017-6448-4.

    Article  CAS  Google Scholar 

  14. Zhang N, Yildirim E, Zane CP, Shen J, Vinueza N, Hinks D, et al. Improved eco-friendliness of a common flame retardant through inclusion complexation with cyclodextrins. ACS Appl Polym Mater. 2019;1(10):2768–77. https://doi.org/10.1021/acsapm.9b00708.

    Article  CAS  Google Scholar 

  15. Jin H, Yang L, Ahonen JR, Schoenfisch MH. Nitric oxide-releasing cyclodextrins. J Am Chem Soc. 2018;140(43):14178–84. https://doi.org/10.1021/jacs.8b07661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shan X, Han J, Li J, Song Y, Hu Y. Preparation of β-CD@ferrocene@hollow mesoporous silica microsphere and investigation of its flame retardant EP. Polym Composite. 2020;41(5):2013–24. https://doi.org/10.1002/pc.25516.

    Article  CAS  Google Scholar 

  17. Zhang K, Zhang G, Zhang R, Chen C, Wan C, Cai Y, et al. Synergistic effects of intercalation of layered double hydroxide with phytic acid-grafted β-cyclodextrin on the flame retardancy of polypropylene. Mater Today Commun. 2022;32:103904. https://doi.org/10.1016/j.mtcomm.2022.103904.

    Article  CAS  Google Scholar 

  18. Cagno MPD. The potential of cyclodextrins as novel active pharmaceutical ingredients: a short overview. Molecules. 2016;22(1):1. https://doi.org/10.3390/molecules22010001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feng J, Su S, Zhu J. An intumescent flame retardant system using β-cyclodextrin as a carbon source in polylactic acid (PLA). Polym Advan Technol. 2011;22(7):1115–22. https://doi.org/10.1002/pat.1954.

    Article  CAS  Google Scholar 

  20. Hădărugă NG, Bandur GN, David I, Hădărugă DI. A review on thermal analyses of cyclodextrins and cyclodextrin complexes. Environ Chem Lett. 2019;17(1):349–73. https://doi.org/10.1007/s10311-018-0806-8.

    Article  CAS  Google Scholar 

  21. Vahabi H, Shabanian M, Aryanasab F, Laoutid F, Benali S, Saeb MR, et al. Three in one: β-cyclodextrin, nanohydroxyapatite, and a nitrogen-rich polymer integrated into a new flame retardant for poly(lactic acid). Fire Mater. 2018;42(6):593–602. https://doi.org/10.1002/fam.2513.

    Article  CAS  Google Scholar 

  22. Shan X, Jiang K, Li J, Song Y, Han J, Hu Y. Preparation of β-cyclodextrin inclusion complex and its application as an intumescent flame retardant for epoxy. Polymers. 2019;11(1):71. https://doi.org/10.3390/polym11010071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding S, Liu P, Zhang S, Gao C, Wang F, Ding Y, et al. Crosslinking of β-cyclodextrin and combining with ammonium polyphosphate for flame-retardant polypropylene. J Appl Polym Sci. 2020;137(4):48320. https://doi.org/10.1002/app.48320.

    Article  CAS  Google Scholar 

  24. Zheng Z, Zhang L, Liu Y, Wang H. A facile and novel modification method of β-cyclodextrin and its application in intumescent flame-retarding polypropylene with melamine phosphate and expandable graphite. J Polym Res. 2016;23(4):1–17. https://doi.org/10.1007/s10965-015-0905-1.

    Article  CAS  Google Scholar 

  25. Zheng Z, Xia Y, Liao C, Liu Y, Dai B, Guo Z, et al. Facile fabrication of cyclodextrin-based and integrated fame retardant in intumescent fame-retarding polypropylene. J Therm Anal Calorim. 2021;146(6):2375–86. https://doi.org/10.1007/s10973-020-10455-x.

    Article  CAS  Google Scholar 

  26. Pan Y, Luo Z, Wang B. Cross-linking modification of ammonium polyphosphate via ionic exchange and self-assembly for enhancing the fire safety properties of polypropylene. Polymers. 2020;12(11):2761. https://doi.org/10.3390/polym12112761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pallmann J, Ren YL, Mahltig B, Huo T. Phosphorylated sodium alginate/APP/DPER intumescent flame retardant used for polypropylene. J Appl Polym Sci. 2019;136(29):47794. https://doi.org/10.1002/app.47794.

    Article  CAS  Google Scholar 

  28. Chen Z, Yu Y, Zhang Q, Chen Z, Chen T, Li C, et al. Surface-modified ammonium polyphosphate with (3-aminopropyl)triethoxysilane, pentaerythritol and melamine dramatically improve flame retardancy and thermal stability of unsaturated polyester resin. J Therm Anal Calorim. 2021;143(5):3479–88. https://doi.org/10.1007/s10973-020-10282-0.

    Article  CAS  Google Scholar 

  29. Yu Y, Wang Q, Yuan J, Fan X, Wang P, Cui L. Hydrophobic modification of cotton fabric with octadecylamine via laccase/TEMPO mediated grafting. Carbohyd Polym. 2016;137:549–55. https://doi.org/10.1016/j.carbpol.2015.11.026.

    Article  CAS  Google Scholar 

  30. Liu Y, Gao Y, Zhang Z, Wang Q. Preparation of ammonium polyphosphate and dye co-intercalated LDH/polypropylene composites with enhanced flame retardant and UV resistance properties. Chemosphere. 2021;277:130370. https://doi.org/10.1016/j.chemosphere.2021.130370.

    Article  CAS  PubMed  Google Scholar 

  31. Xu J, Niu Y, Xie Z, Liang F, Guo F, Wu J. Synergistic flame retardant effect of carbon nanohorns and ammonium polyphosphate as a novel flame retardant system for cotton fabrics. Chem Eng J. 2023;451:138566. https://doi.org/10.1016/j.cej.2022.138566.

    Article  CAS  Google Scholar 

  32. Qiu S, Ma C, Wang X, Zhou X, Feng X, Yuen RK, et al. Melamine-containing polyphosphazene wrapped ammonium polyphosphate: A novel multifunctional organic-inorganic hybrid flame retardant. J Hazard Mater. 2018;344:839–48. https://doi.org/10.1016/j.jhazmat.2017.11.018.

    Article  CAS  PubMed  Google Scholar 

  33. Khanal S, Zhang W, Ahmed S, Ali M, Xu S. Effects of intumescent flame retardant system consisting of tris (2-hydroxyethyl) isocyanurate and ammonium polyphosphate on the flame retardant properties of high-density polyethylene composites. Compos Part A Appl S. 2018;112:444–51. https://doi.org/10.1016/j.compositesa.2018.06.030.

    Article  CAS  Google Scholar 

  34. Ren Y, Yuan D, Li W, Cai X. Flame retardant efficiency of KH-550 modified urea-formaldehyde resin cooperating with ammonium polyphosphate on polypropylene. Polym Degrad Stabil. 2018;151:160–71. https://doi.org/10.1016/j.polymdegradstab.2018.03.014.

    Article  CAS  Google Scholar 

  35. Cabrera-Alvarez EN, Ramos-deValle LF, Sánchez-Valdes S, Candia-García A, Soriano-Corral F, Ramírez-Vargas E, et al. Study of the silane modification of magnesium hydroxide and their effects on the flame retardant and tensile properties of high density polyethylene nanocomposites. Polym Compos. 2014;35(6):1060–9. https://doi.org/10.1002/pc.22753.

    Article  CAS  Google Scholar 

  36. Jafari M, Keshavarz MH, Noorbala MR, Kamalvand M. A reliable method for prediction of the condensed phase enthalpy of formation of high nitrogen content materials through their gas phase information. Chem Select. 2016;1(16):5286–96. https://doi.org/10.1002/slct.201601184.

    Article  CAS  Google Scholar 

  37. Huang Z, Ruan B, Wu J, Ma N, Jiang T, Tsai FC. High-efficiency ammonium polyphosphate intumescent encapsulated polypropylene flame retardant. J Appl Polym Sci. 2021;138(20):50413. https://doi.org/10.1002/app.50413.

    Article  CAS  Google Scholar 

  38. Qi J, Wen Q, Zhu J. Synergistic effect of intumescent flame retardant system consisting of hexophenoxy cyclotriphosphazene and ammonium polyphosphate on methyl ethyl silicone rubber. Mater Lett. 2019;249:62–5. https://doi.org/10.1016/j.matlet.2019.04.053.

    Article  CAS  Google Scholar 

  39. Castrovinci A, Camino G, Drevelle C, Duquesne S, Magniez C, Vouters M. Ammonium polyphosphate-aluminum trihydroxide antagonism in fire retarded butadiene-styrene block copolymer. Eur Polym J. 2005;41:2023–33. https://doi.org/10.1016/j.eurpolymj.2005.03.010.

    Article  CAS  Google Scholar 

  40. Hamdani S, Longuet C, Perrin D, Lopez-cuesta JM, Ganachaud F. Flame retardancy of silicone-based materials. Polym Degrad Stabil. 2009;94:465–95. https://doi.org/10.1016/j.polymdegradstab.2008.11.019.

    Article  CAS  Google Scholar 

  41. Jiang W, Hao J, Han Z. Study on the thermal degradation of mixtures of ammonium polyphosphate and a novel caged bicyclic phosphate and their flame retardant effect in polypropylene. Polym Degrad Stabil. 2012;97:632–7. https://doi.org/10.1016/j.polymdegradstab.2012.01.001.

    Article  CAS  Google Scholar 

  42. Hu S, Tan Z, Chen F, Li J, Shen Q, Huang Z, et al. Flame-retardant properties and synergistic effect of ammonium polyphosphate/aluminum hydroxide/mica/silicone rubber composites. Fire Mater. 2020;44(5):673–82. https://doi.org/10.1002/fam.2831.

    Article  CAS  Google Scholar 

  43. Wang B, Li J, Lai X, Li H, Chen Y, Zeng X. Synthesis of a novel N-alkoxyamine containing macromolecular intumescent flame retardant and its synergism in flame-retarding polypropylene. Polym Advan Technol. 2021;32(6):2452–64. https://doi.org/10.1002/pat.5275.

    Article  CAS  Google Scholar 

  44. Sun Y, Yuan B, Shang S, Zhang H, Shi Y, Yu B, et al. Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene. Compos Part B Eng. 2020;181:107588. https://doi.org/10.1016/j.compositesb.2019.107588.

    Article  CAS  Google Scholar 

  45. Rybiński P, Żukowski W, Bradło D. Effect of cenospheric fillers on the flammability and fire hazard of silicone rubber composites. J Therm Anal Calorim. 2016;125(3):1373–86. https://doi.org/10.1007/s10973-016-5741-y.

    Article  CAS  Google Scholar 

  46. Gu L, Shi Y, Zhang L. Synthesis and characterization of bio-based “three sources in one” intumescent flame retardant monomer and the intrinsic flame retardant waterborne polyurethane. J Polym Res. 2022;29(5):1–14. https://doi.org/10.1007/s10965-022-03033-2.

    Article  CAS  Google Scholar 

  47. Zhou Y, Liu Q, Xu P, Cheng H, Liu Q. Molecular structure and decomposition kinetics of kaolinite/alkylamine intercalation compounds. Front Chem. 2018;6:310. https://doi.org/10.3389/fchem.2018.00310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yuan B, Fan A, Yang M, Chen X, Hu Y, Bao C, et al. The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym Degrad Stabil. 2017;143:42–56. https://doi.org/10.1016/j.polymdegradstab.2017.06.015.

    Article  CAS  Google Scholar 

  49. Liu Y, Yi J, Cai X. The investigation of intumescent flame-retarded polypropylene using poly(hexamethylene terephthalamide) as carbonization agent. J Therm Anal Calorim. 2012;107(3):1191–7. https://doi.org/10.1007/s10973-011-1874-1.

    Article  CAS  Google Scholar 

  50. Zhang W, Li X, Fan H, Yang R. Study on mechanism of phosphorus-silicon synergistic flame retardancy on epoxy resins. Polym Degrad Stabil. 2012;97(11):2241–8. https://doi.org/10.1016/j.polymdegradstab.2012.08.002.

    Article  CAS  Google Scholar 

  51. Ding H, Huang K, Li S, Xu L, Xia J, Li M. Flame retardancy and thermal degradation of halogen-free flame-retardant biobased polyurethane composites based on ammonium polyphosphate and aluminium hypophosphite. Polym Test. 2017;62:325–34. https://doi.org/10.1016/j.polymertesting.2017.07.017.

    Article  CAS  Google Scholar 

  52. Zhang X, Zhang Q, Zheng J. Effect and mechanism of iron oxide modified carbon nanotubes on thermal oxidative stability of silicone rubber. Compos Sci Technol. 2014;99:1–7. https://doi.org/10.1016/j.compscitech.2014.05.003.

    Article  CAS  Google Scholar 

  53. Chen X, Song W, Liu J, Jiao C, Qian Y. Synergistic flame-retardant effects between aluminum hypophosphite and expandable graphite in silicone rubber composites. J Therm Anal Calorim. 2015;120(3):1819–26. https://doi.org/10.1007/s10973-015-4428-0.

    Article  CAS  Google Scholar 

  54. Zhan Y, Wu X, Wang S, Yuan B, Fang Q, Shang S, et al. Synthesis of a bio-based flame retardant via a facile strategy and its synergistic effect with ammonium polyphosphate on the flame retardancy of polylactic acid. Polym Degrad Stabil. 2021;191:109684. https://doi.org/10.1016/j.polymdegradstab.2021.109684.

    Article  CAS  Google Scholar 

Download references

Funding

The work was funded from National Natural Science Foundation of China, China (grant number 52005050), Foundation of State Key Laboratory of Automotive Simulation and Control, China (grant number 20201105), Science and Technology Development Project of Jilin Province, China (grant number YDZJ202201ZYTS334) and Science and Technology Research Project of Education Department of Jilin Province, China (grant number JJKH20220679KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaihang Zheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1767 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Chai, W., Xia, Y. et al. Bio-inspired construction of hydrophobic, bio-based and halogen-free flame-retardant strategy for silicone rubber. J Therm Anal Calorim 148, 9857–9874 (2023). https://doi.org/10.1007/s10973-023-12371-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12371-2

Keywords

Navigation