Skip to main content
Log in

Effect of 1-butyl-3-methylimidazolium hexafluorophosphate as the humectant on the thermal decomposition of nitrocellulose

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nitrocellulose is a versatile and thermosensitive material. Its thermal instability has caused a considerable number of fire and explosion accidents during production, transport, storage and use. Humectants are commonly used to increase the safety of nitrocellulose. Alcoholic humectants only retard but do not inhibit the spontaneous combustion of nitrocellulose. 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) contains phosphorus, fluorine and nitrogen elements, which has excellent flame retardant properties. In addition, the ionic liquid containing fluorine elements can effectively absorb noxious gases. In this study, the thermal stability of [Bmim][PF6] was evaluated by thermogravimetric analyzer (TG). Furthermore, the feasibility of [Bmim][PF6] as a humectant and its superiority over ethanol were verified by ignition point tests and nitrogen dioxide absorption experiments. In addition, differential scanning calorimeter (DSC), adiabatic acceleration calorimeter (Phi-tec II) and kinetics evaluation were performed to characterize the effect of [Bmim][PF6] and ethanol on the thermal stability of nitrocellulose. The results show that [Bmim][PF6] has high thermal stability and can inhibit the decomposition of nitrocellulose by absorbing nitrogen dioxide. Its uptake of nitrogen dioxide was 0.5557 g g−1 at room temperature. The results of calorimetric experiments and kinetic evaluation show that ethanol increases the decomposition temperature of nitrocellulose, but also increases the severity of its thermal runaway. [Bmim][PF6] improved the safety of nitrocellulose by reducing the severity of nitrocellulose decomposition through NO2 absorption, which indicates that [Bmim][PF6] is more compatible with the requirements of intrinsic safety as the humectant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Golubev AE, Kuvshinova SA, Burmistrov VA, Koifman OI. Modern advances in the preparation and modification of cellulose nitrates. Russ J Gen Chem. 2018;88(2):368–81. https://doi.org/10.1134/S1070363218020305.

    Article  CAS  Google Scholar 

  2. Katoh K, Higashi E, Ariyoshi Y, Wada Y, Nakano K. Relationship between accidents involving spontaneous ignition of nitric acid esters and weather conditions. Sci Technol Energetic Mater. 2013;74:132–7.

    CAS  Google Scholar 

  3. Wu Y, Luo Y, Ge Z. Properties and application of a novel type of glycidyl azide polymer (GAP)-modified nitrocellulose powders. Propellants, Explos, Pyrotech. 2015;40(1):67–73. https://doi.org/10.1002/prep.201400005.

    Article  CAS  Google Scholar 

  4. Liang X, Jiang H, Pan X, Hua M, Jiang JJJoTA,. Calorimetry. Analysis and characterization of nitrocellulose as binder optimized by 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Therm Anal Calorim. 2019;143:113–26.

    Article  Google Scholar 

  5. Liang X, Cheng Y-C, Lin W-C, Tung P-H, Huang H-Q, Pan X, et al. Analysis and characterisation of 1-butyl-3-methylimidazolium hexafluorophosphate as a humectant of nitrocellulose. J, Mol, Liq. 2020;303:112617. https://doi.org/10.1016/j.molliq.2020.112617.

    Article  CAS  Google Scholar 

  6. United N. Globally harmonized system of classification and labelling of chemicals( GHS ). 2009.

  7. Dakkoune A, Vernières-Hassimi L, Leveneur S, Lefebvre D, Estel L. Risk analysis of French chemical industry. Saf Sci. 2018;105:77–85. https://doi.org/10.1016/j.ssci.2018.02.003.

    Article  Google Scholar 

  8. Dakkoune A, Vernières-Hassimi L, Leveneur S, Lefebvre D, Estel L. Analysis of thermal runaway events in French chemical industry. J Loss Prev Process Ind. 2019;62:103938. https://doi.org/10.1016/j.jlp.2019.103938.

    Article  CAS  Google Scholar 

  9. Katoh K, Higashi E, Saburi T, Ito S, Wada Y, Kawaguchi S, et al. Spontaneous ignition behavior of nitrocellulose-sulfuric acid mixtures. Appl Mech Mater. 2014;625:280–4. https://doi.org/10.4028/www.scientific.net/AMM.625.280.

    Article  CAS  Google Scholar 

  10. Wu C, Huang L. A new accident causation model based on information flow and its application in Tianjin Port fire and explosion accident. Reliab Eng Syst Saf. 2019;182:73–85. https://doi.org/10.1016/j.ress.2018.10.009.

    Article  Google Scholar 

  11. Mi W, Wei R, Zhou T, He J, Wang J. experimental study on the thermal decomposition of two nitrocellulose mixtures in different forms. Mater Sci. 2019. https://doi.org/10.5755/j01.ms.25.1.18907.

    Article  Google Scholar 

  12. Wei R, He Y, Zhang Z, He J, Yuen R, Wang J. Effect of different humectants on the thermal stability and fire hazard of nitrocellulose. J Therm Anal Calorim. 2018;133(3):1291–307. https://doi.org/10.1007/s10973-018-7235-6.

    Article  CAS  Google Scholar 

  13. China. Investigation report on special major fire and explosion accident in dangerous goods warehouse of "August 12" Ruihai company of Tianjin Port 2016.

  14. Luo Q, Ren T, Shen H, Zhang J, Liang D. The thermal properties of nitrocellulose: from thermal decomposition to thermal explosion. Combust Sci Technol. 2018;190(4):579–90. https://doi.org/10.1080/00102202.2017.1396586.

    Article  CAS  Google Scholar 

  15. Luo Q, Liang D, Shen H. Evaluation of self-heating and spontaneous combustion risk of biomass and fishmeal with thermal analysis (DSC-TG) and self-heating substances test experiments. Thermochim Acta. 2016;635:1–7. https://doi.org/10.1016/j.tca.2016.04.017.

    Article  CAS  Google Scholar 

  16. Sovizi MR, Hajimirsadeghi SS, Naderizadeh B. Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;168(2):1134–9. https://doi.org/10.1016/j.jhazmat.2009.02.146.

    Article  CAS  PubMed  Google Scholar 

  17. Wang K, Liu D, Xu S, Cai G. Research on the thermal history’s influence on the thermal stability of EHN and NC. Thermochim Acta. 2015;610:23–8. https://doi.org/10.1016/j.tca.2015.04.022.

    Article  CAS  Google Scholar 

  18. Chu YC, Tsai FC, Chen WT, Tsai LC, Shu CM, Lin CP. Thermal stability determination, anti-biodegradation, and thermal degradation of nitrocellulose with various nitrogen content by DSC and FT-IR. Adv Mater Res. 2011;189–193:1417–20. https://doi.org/10.4028/www.scientific.net/AMR.189-193.1417.

    Article  CAS  Google Scholar 

  19. Pu C-k, Luan Y, Yi M-j, Xiao Z-g. Investigation on thermal characteristics and desensitization mechanism of improved step ladder-structured nitrocellulose. Def Technol. 2022. https://doi.org/10.1016/j.dt.2022.01.004.

    Article  Google Scholar 

  20. Chai H, Duan Q, Cao H, Li M, Sun J. Effects of nitrogen content on pyrolysis behavior of nitrocellulose. Fuel. 2020;264:116853. https://doi.org/10.1016/j.fuel.2019.116853.

    Article  CAS  Google Scholar 

  21. Katoh K, Soramoto T, Higashi E, Kawaguchi S, Kumagae K, Ito S, et al. Influence of water on the thermal stability of nitrocellulose. Sci Technol Energe Mater. 2014;75:44–9.

    CAS  Google Scholar 

  22. Katoh K, Ito S, Ogata Y, Kasamatsu J-i, Miya H, Yamamoto M, et al. Effect of industrial water components on thermal stability of nitrocellulose. J Therm Anal Calorim. 2010;99(1):159–64. https://doi.org/10.1007/s10973-009-0492-7.

    Article  CAS  Google Scholar 

  23. Pourmortazavi SM, Hosseini SG, Rahimi-Nasrabadi M, Hajimirsadeghi SS, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162(2):1141–4. https://doi.org/10.1016/j.jhazmat.2008.05.161.

    Article  CAS  PubMed  Google Scholar 

  24. Lin CP, Shu CM. A comparison of thermal decomposition energy and nitrogen content of nitrocellulose in non-fat process of linters by DSC and EA. J Therm Anal Calorim. 2009;95(2):547–52. https://doi.org/10.1007/s10973-008-9463-7.

    Article  CAS  Google Scholar 

  25. Shehata AB, Hassan MA, Nour MA. Effect of new poly 2-acryloyl-N, N′-bis (4-nitrophenyl) propandiamide and poly 2-acryloyl-N, N′-bis (4-methylphenyl) propandiamide and their synergistic action on the stability of nitrocellulose. J Hazard Mater. 2003;102(2):121–36. https://doi.org/10.1016/S0304-3894(03)00138-9.

    Article  CAS  PubMed  Google Scholar 

  26. Hassan MA. Effect of malonyl malonanilide dimers on the thermal stability of nitrocellulose. J Hazard Mater. 2001;88(1):33–49. https://doi.org/10.1016/S0304-3894(01)00297-7.

    Article  CAS  PubMed  Google Scholar 

  27. Venter A, Ifa DR, Cooks RG, Poehlein SK, Chin A, Ellison D. A desorption electrospray ionization mass spectrometry study of aging products of diphenylamine stabilizer in double-base propellants. Propellants, Explos, Pyrotech. 2006;31(6):472–6. https://doi.org/10.1002/prep.200600064.

    Article  CAS  Google Scholar 

  28. Pandey B, Bharadwaj S. A two-dimensional analysis of percolation and filamentarity in the sloan digital sky survey data release one. Mon Not R Astron Soc. 2005;357(3):1068–76. https://doi.org/10.1111/j.1365-2966.2005.08726.x.

    Article  Google Scholar 

  29. Mahajan RR, Makashir PS, Agrawal JP. combustion behaviour of nitrocellulose and its complexes with copper oxide. Hot stage microscopic studies. J Therm Anal Calorim. 2001;65(3):935–42. https://doi.org/10.1023/A:1011905021880.

    Article  CAS  Google Scholar 

  30. Rychlý J, Lattuati-Derieux A, Matisová-Rychlá L, Csomorová K, Janigová I, Lavédrine B. Degradation of aged nitrocellulose investigated by thermal analysis and chemiluminescence. J Therm Anal Calorim. 2012;107(3):1267–76. https://doi.org/10.1007/s10973-011-1746-8.

    Article  CAS  Google Scholar 

  31. He Y, He Y, Liu J, Li P, Chen M, Wei R, et al. Experimental study on the thermal decomposition and combustion characteristics of nitrocellulose with different alcohol humectants. J Hazard Mater. 2017;340:202–12. https://doi.org/10.1016/j.jhazmat.2017.06.029.

    Article  CAS  PubMed  Google Scholar 

  32. Maton C, De Vos N, Stevens CV. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev. 2013;42(13):5963–77. https://doi.org/10.1039/C3CS60071H.

    Article  CAS  PubMed  Google Scholar 

  33. Zheng L, Bu X-X, Fan B-H, Wei J, Xing N-N, Guan W. Study on thermodynamic property for ionic liquid [C4mim][Lact](1-butyl-3-methylimidazolium lactic acid). J Therm Anal Calorim. 2016;123(2):1619–25. https://doi.org/10.1007/s10973-015-5051-9.

    Article  CAS  Google Scholar 

  34. Huang G, Lin W-C, He P, Pan Y, Shu C-M. Thermal decomposition of imidazolium-based ionic liquid binary mixture: processes and mechanisms. J Mol Liq. 2018;272:37–42. https://doi.org/10.1016/j.molliq.2018.09.058.

    Article  CAS  Google Scholar 

  35. Hejazifar M, Lanaridi O, Bica-Schröder K. Ionic liquid based microemulsions: a review. J Mol Liq. 2020;303:112264. https://doi.org/10.1016/j.molliq.2019.112264.

    Article  CAS  Google Scholar 

  36. Weiqing Z, Shuguang J, Kai W, Lanyun W, Zhengyan WU, Liwen K, et al. Study on coal spontaneous combustion characteristic structures affected by ionic liquids. Procedia Eng. 2011;26:480–5. https://doi.org/10.1016/j.proeng.2011.11.2195.

    Article  CAS  Google Scholar 

  37. Cui F-S, Laiwang B, Shu C-M, Jiang J-C. Inhibiting effect of imidazolium-based ionic liquids on the spontaneous combustion characteristics of lignite. Fuel. 2018;217:508–14. https://doi.org/10.1016/j.fuel.2017.12.092.

    Article  CAS  Google Scholar 

  38. Sonnier R, Dumazert L, Livi S, Nguyen TKL, Duchet-Rumeau J, Vahabi H, et al. Flame retardancy of phosphorus-containing ionic liquid based epoxy networks. Polym Degrad Stab. 2016;134:186–93. https://doi.org/10.1016/j.polymdegradstab.2016.10.009.

    Article  CAS  Google Scholar 

  39. Jiang H-C, Lin W-C, Hua M, Pan X-H, Shu C-M, Jiang J-C. Difunctional effects of [Bmim][DBP] on curing process and flame retardancy of epoxy resin. J Therm Anal Calorim. 2019;137(5):1707–17. https://doi.org/10.1007/s10973-018-08000-y.

    Article  CAS  Google Scholar 

  40. Jiang H-C, Lin W-C, Hua M, Pan X-H, Shu C-M, Jiang J-C. Analysis of thermal stability and pyrolysis kinetic of dibutyl phosphate-based ionic liquid through thermogravimetry, gas chromatography/mass spectrometry, and Fourier transform infrared spectrometry. J Therm Anal Calorim. 2019;138(1):489–99. https://doi.org/10.1007/s10973-019-08229-1.

    Article  CAS  Google Scholar 

  41. Jiang H-C, Lin W-C, Hua M, Pan X-H, Shu C-M, Jiang J-C. Analysis of kinetics of thermal decomposition of melamine blended with phosphorous ionic liquid by green approach. J Therm Anal Calorim. 2018;131(3):2821–31. https://doi.org/10.1007/s10973-017-6737-y.

    Article  CAS  Google Scholar 

  42. Yokozeki A, Shiflett MB. Vapor–liquid equilibria of ammonia+ionic liquid mixtures. Appl Energy. 2007;84(12):1258–73. https://doi.org/10.1016/j.apenergy.2007.02.005.

    Article  CAS  Google Scholar 

  43. Yokozeki A, Shiflett MB. Ammonia solubilities in room-temperature ionic liquids. Ind Eng Chem Res. 2007;46(5):1605–10. https://doi.org/10.1021/ie061260d.

    Article  CAS  Google Scholar 

  44. Weize Wu, Buxing H, Haixiang G, et al. Desulfurization of flue gas: SO2 absorption by an ionic liquid. Angew Chem Int Ed. 2003;43(18):2415–7.

    Google Scholar 

  45. Zeng S, Gao H, Zhang X, Dong H, Zhang X, Zhang S. Efficient and reversible capture of SO2 by pyridinium-based ionic liquids. Chem Eng J. 2014;251:248–56. https://doi.org/10.1016/j.cej.2014.04.040.

    Article  CAS  Google Scholar 

  46. Zeng S, Zhang X, Gao H, He H, Zhang X, Zhang S. SO2-induced variations in the viscosity of ionic liquids investigated by in situ fourier transform infrared spectroscopy and simulation calculations. Ind Eng Chem Res. 2015;54(43):10854–62. https://doi.org/10.1021/acs.iecr.5b01807.

    Article  CAS  Google Scholar 

  47. Wang J, Zeng S, Bai L, Gao H, Zhang X, Zhang S. Novel ether-functionalized pyridinium chloride ionic liquids for efficient SO2 capture. Ind Eng Chem Res. 2014;53(43):16832–9. https://doi.org/10.1021/ie5027265.

    Article  CAS  Google Scholar 

  48. Huang K, Zhang X-M, Hu X-B, Wu Y-T. Hydrophobic protic ionic liquids tethered with tertiary amine group for highly efficient and selective absorption of H2S from CO2. AIChE J. 2016;62(12):4480–90. https://doi.org/10.1002/aic.15363.

    Article  CAS  Google Scholar 

  49. Duan E, Guo B, Zhang D, Shi L, Sun H, Wang Y. Absorption of NO and NO2 in caprolactam tetrabutyl ammonium halide ionic liquids. J Air Waste Manag Assoc. 2011;61(12):1393–7. https://doi.org/10.1080/10473289.2011.623635.

    Article  CAS  PubMed  Google Scholar 

  50. Wang Q, Ng D, Mannan MS. Study on the reaction mechanism and kinetics of the thermal decomposition of nitroethane. Ind Eng Chem Res. 2009;48(18):8745–51. https://doi.org/10.1021/ie900849n.

    Article  CAS  Google Scholar 

  51. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1):1–19. https://doi.org/10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  52. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23. https://doi.org/10.1016/j.tca.2014.05.036.

    Article  CAS  Google Scholar 

  53. Yu A-D, Cao C-R, Pan X-H, Shu C-M, Wang W-J. Solid thermal explosion of autocatalytic material based on nonisothermal experiments: Multistage evaluations for 2,2′-azobis(2-methylpropionitrile) and 1,1′-azobis(cyclohexanecarbonitrile). Process Saf Prog. 2019;38(4):e12058. https://doi.org/10.1002/prs.12058.

    Article  CAS  Google Scholar 

  54. Yu A, Hua M, Pan X, Ni L, Liang X, Wei C, et al. Hazard evaluation for chlorination and amination reactions of fluorocytosine production process. J Loss Prev Process Ind. 2020;67:104212. https://doi.org/10.1016/j.jlp.2020.104212.

    Article  CAS  Google Scholar 

  55. Kossoy A, Hofelich T. Methodology and software for assessing reactivity ratings of chemical systems. Process Saf Prog. 2003;22(4):235–40. https://doi.org/10.1002/prs.680220410.

    Article  CAS  Google Scholar 

  56. Kossoy AA, Sheinman IY. Evaluating thermal explosion hazard by using kinetics-based simulation approach. Process Saf Environ Prot. 2004;82(6):421–30. https://doi.org/10.1205/psep.82.6.421.53208.

    Article  CAS  Google Scholar 

  57. Wang Q, Wang J, Larranaga MD. Simple relationship for predicting onset temperatures of nitro compounds in thermal explosions. J Therm Anal Calorim. 2013;111(2):1033–7. https://doi.org/10.1007/s10973-012-2377-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51874181), Jiangsu Province Key Research and Development Program-Social Development (No. BE2020729), Key Research and Development Program of Ningxia Hui Autonomous Region (No. 2022BEE02001), Special fund for transformation of scientific and technological achievements in Jiangsu Province (No. BA2020019), and the Priority Academic Program Development of Jiangsu Higher Education Institution. Andong Yu is grateful for the joint Surrey-Nanjing Tech PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Hua or Xuhai Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, A., Liang, X., Hua, M. et al. Effect of 1-butyl-3-methylimidazolium hexafluorophosphate as the humectant on the thermal decomposition of nitrocellulose. J Therm Anal Calorim 148, 5695–5708 (2023). https://doi.org/10.1007/s10973-023-12129-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12129-w

Keywords

Navigation