Skip to main content
Log in

Degradation of aged nitrocellulose investigated by thermal analysis and chemiluminescence

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Non-isothermal thermogravimetry, differential scanning calorimetry and chemiluminescence were used for characterization of degradation of pre-aged nitrocellulose in order to elucidate the optimal route of extrapolation of rate constants from the region of the autoaccelerated reaction to lower temperatures. First order rate constants, the one characterizing the decomposition of nitrocellulose in the rate auto-accelerating region and the two constants corresponding to the slow process in induction period of nitrocellulose decomposition were shown to provide a sufficient description. The rate constants determined for several temperatures were shown to depend on the amount of char residue which is formed from pre-aged samples after the thermogravimetry runs from 40 to 550 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 1

Similar content being viewed by others

References

  1. Quye A, Littlejohn D, Pethrick RA, Steward RA. Investigation of inherent degradation in cellulose nitrate museum artefacts. Polym Degrad Stab. 2011. doi:10.1016/j.polymdegradstab.2011.03.009.

  2. Clarkson A, Roberston CM. Refined calculation for determination of nitrogen in nitrocellulose by infrared spectrometry. Anal Chem. 1966;38:522.

    Article  CAS  Google Scholar 

  3. Krabbendam-LaHaye ELM, De Klerk WPC, Krämer RE. The kinetic behavior and thermal stability of commercially available explosives. J Therm Anal Calorim. 2005;80:495–501.

    Article  CAS  Google Scholar 

  4. Makashir PS, Mahajan RR, Agrawal JJ. Studies on kinetics and mechanism of initial thermal decomposition of nitrocellulose. J Therm Anal Calorim. 1995;45:501–9.

    Article  CAS  Google Scholar 

  5. Binke N, Rong L, Zhengquan Y, Yuan W, Rongzu YPH, Qingsen Y. Studies on the kinetics of the first order autocatalytic decomposition reaction of highly nitrated nitrocellulose. J Therm Anal Calorim. 1999;58:403–11.

    Article  CAS  Google Scholar 

  6. Paulik F, Paulik J, Arnold M. TG and TGT investigations of the decomposition of nitrocellulose under quasi-isothermal conditions. J Therm Anal Calorim. 1977;12:383.

    Article  CAS  Google Scholar 

  7. Rong L, Binke N, Yuan W, Zhengquan Y, Rongzu H. Estimation of the critical temperature of thermal explosion for the highly nitrated nitrocellulose using non-isothermal DSC. J Therm Anal Calorim. 1999;58:369–73.

    Article  CAS  Google Scholar 

  8. Phillips RW, Orlick CA, Steinberger R. The kinetics of the thermal decomposition of nitrocellulose. J Phys Chem. 1955;59:1034–9.

    Article  CAS  Google Scholar 

  9. Huwei L, Ruonong F. Studies on thermal decomposition of nitrocellulose by pyrolysis-gas chromatography. J Anal Pyrolysis. 1988;14:163–7.

    Article  Google Scholar 

  10. Pourmortazavi SM, Hosseini SG, Rahimi Nasrabadi M, Hajimirsadeghi SS, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162:1141–4.

    Article  CAS  Google Scholar 

  11. Lin CP, Shu CM. A comparison of thermal decomposition energy and nitrogen content of nitrocellulose in non-fat process of linters by DSC and EA. J Therm Anal Calorim. 2009;95:547–52.

    Article  CAS  Google Scholar 

  12. Meincke A, Hausdorf D, Gadsden N, Baumeister M, Derrick M, Newman R, Rizzo A. Early cellulose nitrate coatings on furniture of the Company of Modern Craftsmen. In: Keneghan B, Egan L (2007) Proceedings of the conference on plastics—looking at the future and learning from the past, Victoria and Albert Museum, London. London: Archetype Publications; 2008. p. 3.

  13. Shashoua Y. Conservation of plastics, materials science, degradation and preservation. Oxford: Butterworth Heinemann and Elsevier; 2008. p. 178.

    Google Scholar 

  14. Volltrauer HN, Fontijn A. Low-temperature pyrolysis studies by chemiluminescence techniques real time nitrocellulose and PBX decomposition. Combust Flame. 1981;41:313–24.

    Article  CAS  Google Scholar 

  15. Ashby GE. Oxyluminescence from polymers. J Polym Sci. 1961;50:99–106.

    Article  CAS  Google Scholar 

  16. Barker RE, Daane JH, Rentzepis PM. Thermochemiluminescence of polycarbonate and polypropylene. J Polym Sci A. 1965;3:2033–45.

    Article  CAS  Google Scholar 

  17. David DJ. Simultaneous photothermal and differential thermal analysis. Thermochim Acta. 1972;3:277–89.

    Article  CAS  Google Scholar 

  18. Schard MP, Russell CA. Oxyluminescence of polymers. I. General behavior of polymers. J Appl Polym Sci. 1964;8:985–95.

    Article  CAS  Google Scholar 

  19. Reich L, Stivala SS. Elements of polymer degradation. New York: McGraw-Hill; 1971. p. 99.

    Google Scholar 

  20. Rychlá L, Rychlý J. New concepts in chemiluminescence at the evaluation of thermooxidative stability of polypropylene from isothermal and non-isothermal experiments. In: Jimenez A, Zaikov GE, editors. Polymer analysis and degradation. New York: Nova Science Publishers; 2000. p. 124.

  21. Rychlý J, Matisová-Rychlá L, Tiemblo P, Gomez-Elvira J. The effect of physical parameters of isotactic polypropylene on its oxidizability measured by chemiluminescence method. Contribution to the spreading phenomenon. Polym Degrad Stab. 2001;71:253.

    Article  Google Scholar 

  22. Malíková M, Rychlý J, Matisová-Rychlá L, Csomorová K, Janigová I, Wilde HW. Assessing the progress of degradation of polyurethane by chemiluminescence. I. Unstabilised polyurethane. Polym Degrad Stab. 2010;95:2367–75.

    Article  Google Scholar 

  23. Wynne AM, Wendlandt WW. The thermal light emission properties of alathon. 1. Effect of experimental parameters. Thermochim Acta. 1976;14:61–9.

    Article  CAS  Google Scholar 

  24. Hsueh CH, Wendlandt WW. Effect of some experimental parameters on the oxyluminescence curves of selected materials. Thermochim Acta. 1976;99:37–42.

    Article  Google Scholar 

  25. Wendlandt WW. The oxyluminescence of polymers. A review. Thermochimica Acta. 1984;72:363–72.

    Article  CAS  Google Scholar 

  26. Hsueh CH, Wendlandt WW. The kinetics of oxyluminescence of selected polymers. Thermochim Acta. 1986;99:41–7.

    Google Scholar 

  27. Wendlandt WW. The oxyluminescence and kinetics of oxyluminescence of selected polymers. Thermochim Acta. 1983;71:129–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present research has received funding from the European Community’s Seventh Framework Programme FP7/2007-2013 under the grant agreement no. 212218—Popart: Strategy for the preservation of plastic artefacts in museum collections. The authors gratefully acknowledge the support from the Grant Agency VEGA, Project No. 2/0115/09. This publication is the result of the project implementation: Centre for materials, layers and systems for applications and chemical processes under extreme conditions, Stage II which was supported by the Research & Development Operational Programme funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Rychlý.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rychlý, J., Lattuati-Derieux, A., Matisová-Rychlá, L. et al. Degradation of aged nitrocellulose investigated by thermal analysis and chemiluminescence. J Therm Anal Calorim 107, 1267–1276 (2012). https://doi.org/10.1007/s10973-011-1746-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1746-8

Keywords

Navigation