Skip to main content
Log in

Thermal runaway risk of 2,2′-azobis(2-methylbutyronitrile) under the process situations

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal runaway accidents have occurred mainly during storage and transportation of azo compounds because large amounts of heat were released during the course of thermal decomposition. In this study, the thermal runaway characteristics of 2,2′-azobis(2-methylbutyronitrile) (AMBN) were first comprehensively investigated via differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), and gas chromatography/mass spectrometry (GC-MS). The onset temperature (Ton), heat of decomposition (Q), and adiabatic temperature rise (ΔTad) were determined, which were involved in the safety of storage and transportation. Corresponding thermokinetic analyses were performed using DSC and ARC data. The data obtained from the experiments and calculation were utilized to predict the self-accelerating decomposition temperature (SADT), the control temperature (TNR), and the emergency temperature (TC,I). In addition, the flammable components in the pyrolysis products of AMBN were studied, particularly mixed with incompatible materials, such as HCl, NaOH, and Fe2O3, which helped predict the risk of thermal runaway during storage and transportation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Guo S, Wan W, Chen C, Chen WH. Thermal decomposition kinetic evaluation and its thermal hazards prediction of AIBN. J Therm Anal Calorim. 2013;113(3):1169–76.

    Article  CAS  Google Scholar 

  2. Liu S, Chen Y, Hou H. Thermal runaway hazard studies for ABVN mixed with acids or alkalines by DSC, TAM III, and VSP2. J Therm Anal Calorim. 2015;122:1107–16.

    Article  CAS  Google Scholar 

  3. Liu S-H, Lin W-C, Hou H-Y, Shu C-M. Comprehensive runaway kinetic analysis and validation of three azo compounds using calorimetric approach and simulation. J Loss Prev Process Ind. 2017;49:970–82.

    Article  CAS  Google Scholar 

  4. El Harfi J, Kingman SW, Dimitrakis G, Robinson JP, Irvine DJ. Dielectric properties of free radical initiators—investigation of thermal decomposition products. Ind Eng Chem Res. 2012;51(49):15811–20.

    Article  Google Scholar 

  5. Yu AD, Cao CR, Pan XH, Shu CM, Wang WJ. Solid thermal explosion of autocatalytic material based on nonisothermal experiments: multistage evaluations for 2,2′-azobis(2-methylpropionitrile) and 1,1′-azobis(cyclohexanecarbonitrile). Process Saf Prog. 2019;38(4):e12058.

    Article  CAS  Google Scholar 

  6. Chikhalikar AS, Jog SH. A review of methodologies for safety and hazard management in chemical industries. ChemBioEng Rev. 2018;5(6):372–90.

    Article  CAS  Google Scholar 

  7. Lu YM, Liu SH, Shu CM. Evaluation of thermal hazards based on thermokinetic parameters of 2-(1-cyano-1-methylethyl)azocarboxamide by ARC and DSC. J Therm Anal Calorim. 2019;138:2873–81.

    Article  CAS  Google Scholar 

  8. Guo S, Jia M, Qi X, Wan W. Kinetic mechanism and effects of molecular structure on thermal hazards of azo compounds. J Loss Prev Process Ind. 2020;66:104207.

    Article  CAS  Google Scholar 

  9. Liu SH, Cao CR, Lin WC, Shu CM. Experimental and numerical simulation study of the thermal hazards of four azo compounds. J Hazard Mater. 2019;365:164–77.

    Article  CAS  PubMed  Google Scholar 

  10. Li X-R, Wang X-L, Koseki H. Study on thermal decomposition characteristics of AIBN. J Hazard Mater. 2008;159(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  11. Liu S-H, Yu Y-P, Lin Y-C, Weng S-Y, Hsieh T-F, Hou H-Y. Complex thermal evaluation for 2,2′-azobis(isobutyronitrile) by non-isothermal and isothermal kinetic analysis methods. J Therm Anal Calorim. 2014;116(3):1361–7.

    Article  CAS  Google Scholar 

  12. Grewer T, Frurip DJ, Harrison BK. Prediction of thermal hazards of chemical reactions. J Loss Prev Process Ind. 1999;12:391–8.

    Article  Google Scholar 

  13. Stoessel F. Thermal safety of chemical processes—risk assessment and process design. KGaA: WILEY-VCH Verlag GmbH & Co; 2008.

    Book  Google Scholar 

  14. Galwey AK. Eradicating erroneous Arrhenius arithmetic. Thermochim Acta. 2003;399(1–2):1–29.

    Article  CAS  Google Scholar 

  15. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  16. UN. UN Recommendations on the transport of dangerous goods, manual of tests and criteria. New York and Geneva; 2009

  17. Liu SH, Hou HY, Chen JW, Weng SY, Lin YC, Shu CM. Effects of thermal runaway hazard for three organic peroxides conducted by acids and alkalines with DSC, VSP2, and TAM III. Thermochim Acta. 2013;566:226–32.

    Article  CAS  Google Scholar 

  18. Andong Yu, Wang W, Hua M, Pan X, Liang X, Wei C, et al. Thermal hazard analysis of 1-((cyano-1-methylethyl) azo) formamide and effect of incompatible substances on its thermal decomposition. J Loss Prev Process Ind. 2020;65:104098.

    Article  Google Scholar 

  19. Gan X-Y, Yang S, Wang S-Y, Guo X-Y, Chen L-P, Chen W-H. Thermal behavior of benzoyl peroxide mixed with NaOH solution. Thermochim Acta. 2018;670:13–7.

    Article  CAS  Google Scholar 

  20. Roduit B, Hartmann M, Folly P, Sarbach A, Brodard P, Baltensperger R. Determination of thermal hazard from DSC measurements. Investigation of self-accelerating decomposition temperature (SADT) of AIBN. J Therm Anal Calorim. 2014;117(3):1017–26.

    Article  CAS  Google Scholar 

  21. Seo D, Choi Y-J, Lee K, Lee G, Cho Y, Ku B, et al. Investigation on the self-decomposition and explosion hazard of azo compounds. J Loss Prev Process Ind. 2021;72:104499.

    Article  CAS  Google Scholar 

  22. Lv J, Chen W, Chen L, Tian Y, Yan J. Thermal risk evaluation on decomposition processes for four organic peroxides. Thermochim Acta. 2014;589:11–8.

    Article  CAS  Google Scholar 

  23. Li L, Gu W, Laiwang B, Jiang J-J, Jiang J-C, Shu C-M. Effects of 1-butyl-3-metylimidazolium tetrafluoroborate on the thermal hazard of triacetone triperoxide (TATP). Process Saf Environ Prot. 2021;149:518–25.

    Article  CAS  Google Scholar 

  24. Yang Q, Sheng M, Li X, Tucker C, Vásquez Céspedes S, Webb NJ, et al. Potential explosion hazards associated with the autocatalytic thermal decomposition of dimethyl sulfoxide and its mixtures. Org Process Res Dev. 2020;24(6):916–39.

    Article  CAS  Google Scholar 

  25. Laiwang B, Liu SH, Shu CM. Thermal hazards of benzoyl peroxide and its derived process products through theoretical thermodynamics assessment and different calorimetric technologies. J Hazard Mater. 2019;380:120891.

    Article  PubMed  Google Scholar 

  26. Wu S-H, Chou H-C, Pan R-N, Huang Y-H, Horng J-J, Chi J-H, et al. Thermal hazard analyses of organic peroxides and inorganic peroxides by calorimetric approaches. J Therm Anal Calorim. 2011;109(1):355–64.

    Article  Google Scholar 

  27. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  28. Liu S-H, Lin C-P, Shu C-M. Thermokinetic parameters and thermal hazard evaluation for three organic peroxides by DSC and TAM III. J Therm Anal Calorim. 2011;106(1):165–72.

    Article  CAS  Google Scholar 

  29. Zhao J, Zhang W, Hu J, Lin S, Gui X, Li S, et al. Research on the risk of thermal runaway in the industrial process of styrene solution polymerization. Org Process Res Dev. 2021;25(6):1366–74.

    Article  CAS  Google Scholar 

  30. Zhao J, Gui X, Zhang W, Lin S, Tu Y, Hu J, et al. Thermal hazard evaluation of styrene-methyl methacrylate bulk copolymerization by differential scanning calorimetry and accelerating rate calorimetry. Thermochim Acta. 2021;706:179052.

    Article  CAS  Google Scholar 

  31. You ML. Thermal hazard evaluation of cumene hydroperoxide-metal ion mixture using DSC, TAM III, and GC/MS. Molecules. 2016;21(5):562.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cao C-R, Liu S-H, Chi J-H, I Y-P, Shu C-M. Using thermal analysis and kinetics calculation method to assess the thermal stability of azobisdimethylvaleronitrile. J Therm Anal Calorim. 2019;138(4):2853–63.

    Article  CAS  Google Scholar 

  33. Li H-B, Wang S-Y, Gan X-Y, Chen W-H, Chen L-P. Thermal risk analysis of benzoyl peroxide in the presence of phenol: based on the experimental and simulation approach. Thermochim Acta. 2019;681:178354.

    Article  CAS  Google Scholar 

  34. Liu S-H, Guo R-L, Chen W-C, Hou H-Y, Shu C-M. Modeling thermal analysis for predicting thermal hazards relevant to transportation safety and runaway reaction for 2,2′-azobis(isobutyronitrile). J Loss Prev Process Ind. 2021;70:104403.

    Article  CAS  Google Scholar 

  35. Wu H-B, Liu S-H, Cao C-R. Influence and assessment of AIBN on thermal hazard under process situations. J Therm Anal Calorim. 2020;147:1547–55.

    Google Scholar 

  36. Yu A, Wang W, Hua M, Pan X, Liang X, Wei C, et al. Thermal hazard analysis of 1-((cyano-1-methylethyl) azo) formamide and effect of incompatible substances on its thermal decomposition. J Loss Prev Process Ind. 2020;65:104098.

    Article  CAS  Google Scholar 

  37. Gao P-F, Liu S-H, Zhang B, Cao C-R, Shu C-M. Complex thermal analysis and runaway reaction of 2,2′-azobis (isobutyronitrile) using DSC, STA, VSP2, and GC/MS. J Loss Prev Process Ind. 2019;60:87–95.

    Article  CAS  Google Scholar 

  38. Huang J, Jiang J, Ni L, Zhang W, Shen S, Zou M. Thermal decomposition analysis of 2,2-di-(tert-butylperoxy)butane in non-isothermal condition by DSC and GC/MS. Thermochim Acta. 2019;673:68–77.

    Article  CAS  Google Scholar 

  39. Lu Y-M, Liu S-H, Wu T, Zhang B, Chiang C-L. Peculiar effect of acylamino and cyan groups on thermal behavior of 2-(1-cyano-1-methylethyl)azocarboxamide. J Loss Prev Process Ind. 2021;69:104379.

    Article  CAS  Google Scholar 

  40. Lin K-H, Lin W-C, Liu S-H, Shu C-M. Evaluation of thermal reaction for two azo compounds by using 20-L apparatus and calorimetry. J Loss Prev Process Ind. 2021;73:104587.

    Article  CAS  Google Scholar 

  41. Wu H-B, Liu S-H, Cao C-R. Influence and assessment of AIBN on thermal hazard under process situations. J Loss Prev Process Ind. 2021;144:1547–55.

    CAS  Google Scholar 

  42. Budrugeac P. Differential non-linear isoconversional procedure for evaluating the activation energy of non-isothermal reactions. J Therm Anal Calorim. 2002;68:131–9.

    Article  CAS  Google Scholar 

  43. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp. 1964;6:183–95.

    Article  Google Scholar 

  44. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92.

    Article  CAS  Google Scholar 

  45. Senum GI, Yang RT. Rational approximations of the integral of the arrhenius function. J Therm Anal. 1976;11(3):445–7.

    Article  Google Scholar 

  46. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry, application to a phenolic plastic. J Polym Sci Part C Polym Symp. 1964;6:138–95.

    Google Scholar 

  47. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  48. Trans AT. Joint convention of four electrical institutes. Res Rep Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  49. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  50. Trache D, Maggi F, Palmucci I, DeLuca LT. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim. 2018;132(3):1601–15.

    Article  CAS  Google Scholar 

  51. Cheng J, Pan Y, Yao J, Wang X, Pan F, Jiang J. Mechanisms and kinetics studies on the thermal decomposition of micron Poly (methyl methacrylate) and polystyrene. J Loss Prev Process Ind. 2016;40:139–46.

    Article  CAS  Google Scholar 

  52. Liu S, Lu Y, Chiang C, Cao C. Determination of the thermal hazard and decomposition behaviors of 2,2-azobis-(2,4-dimethylvaleronitrile). Process Saf Environ Prot. 2019;131:55–62.

    Article  CAS  Google Scholar 

  53. Cao C-R, Liu S-H, Shu C-M. Reaction simulation of multistage evaluations for AMBN based on DSC experiments. Thermochim Acta. 2018;661:18–26.

    Article  CAS  Google Scholar 

  54. Lu G, Zhang C, Chen L, Chen W, Yang T, Zhou Y. Kinetic analysis and self-accelerating decomposition temperature (SADT) of β-nitroso-α-naphthol. Process Saf Environ Prot. 2015;95:69–76.

    Article  CAS  Google Scholar 

  55. Liu SH, Shu CM. Advanced technology of thermal decomposition for AMBN and ABVN by DSC and VSP2. J Therm Anal Calorim. 2015;121:533–40.

    Article  CAS  Google Scholar 

  56. Safety CCCP. Guidelines for chemical reactivity evaluation and application to process design. New York, 1995

  57. Hsueh K-H, Chen W-C, Chen W-T, Shu C-M. Thermal decomposition analysis of 1,1-bis(tert-butylperoxy)cyclohexane with sulfuric acid contaminants. J Loss Prev Process Ind. 2016;40:357–64.

    Article  CAS  Google Scholar 

  58. Lin S-Y, Shu C-M, Tsai Y-T, Chen W-C, Hsueh K-H. Thermal decomposition on Aceox® BTBPC mixed with hydrochloric acid. J Therm Anal Calorim. 2015;122(3):1177–89.

    Article  CAS  Google Scholar 

  59. Šesták J. Citation records and some forgotten anniversaries in thermal analysis. J Therm Anal Calorim. 2011;109(1):1–5.

    Article  Google Scholar 

  60. Zhang J, Ma Y-Y, Chen L-P, Chen W-H. Experimental and numerical simulation to identify the thermal hazards and hazardous scenarios of N-Nitrodihydroxyethyl dinitrate. Process Saf Environ Prot. 2021;145:211–21.

    Article  CAS  Google Scholar 

  61. Jin SY, Kim MH, Jeong YG, Yoon YI, Park WH. Effect of alkaline hydrolysis on cyclization reaction of PAN nanofibers. Mater Des. 2017;124:69–77. https://doi.org/10.1016/j.matdes.2017.03.066.

    Article  CAS  Google Scholar 

  62. Davison N, Edwards MR. Effects of fire on small commercial gas cylinders. Eng Fail Anal. 2008;15(8):1000–8.

    Article  CAS  Google Scholar 

  63. Brown DB, Ironside MD, Shaw SM. Safety notables: information from the literature. Org Process Res Dev. 2016;20(3):575–82.

    Article  CAS  Google Scholar 

  64. Wang W, Fang J, Pan X, Hua M, Jiang J, Ni L, et al. Thermal research on the uncontrolled behavior of styrene bulk polymerization. J Loss Prev Process Ind. 2019;57:239–44.

    Article  CAS  Google Scholar 

  65. Sun F, Wang G. Study on the thermal risk of the ethylene-vinyl acetate bulk copolymerization. Thermochim Acta. 2019;671:54–9.

    Article  CAS  Google Scholar 

  66. Liu SH, Lu YM, Su C. Thermal hazard investigation and hazardous scenarios identification using thermal analysis coupled with numerical simulation for 2-(1-cyano-1-methylethyl)azocarboxamide. J Hazard Mater. 2020;384:121427.

    Article  CAS  PubMed  Google Scholar 

  67. Green SP, Wheelhouse KM, Payne AD, Hallett JP, Miller PW, Bull JA. On the use of differential scanning calorimetry for thermal hazard assessment of new chemistry: avoiding explosive mistakes. Angew Chem Int Ed Engl. 2020;59(37):15798–802.

    Article  CAS  PubMed  Google Scholar 

  68. Sheng M, Dan F, Horsch S, Bellair R, Holsinger M, Scholtz T, et al. Calorimetric method to determine self-accelerating polymerization temperature (SAPT) for monomer transportation regulation: a heat balance approach. Org Process Res Dev. 2019;23(5):750–61.

    Article  CAS  Google Scholar 

  69. Yang D, Koseki H, Hasegawa K. Predicting the self-accelerating decomposition temperature (SADT) of organic peroxides based on non-isothermal decomposition behavior. J Loss Prev Process Ind. 2003;16(5):411–6.

    Article  Google Scholar 

  70. Malow M, Wehrstedt K-D, Manolov M. Thermal decomposition of AIBN part A: decomposition in real scale packages and SADT determination. Thermochim Acta. 2015;621:1–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support provided by all of the funding agencies mentioned below. The authors Jihe Zhao, Jiwen Hu, Shudong Lin, Xuefeng Gui, and Daguang He received funding from the International Science and Technology Cooperation Project in Guangdong Province (2020A0505100005), the Science and Technology Program of Guangzhou City (201904020019), Guangzhou Science & Technology Project (No. 202102021194), and the National Natural Science Foundation of China (No. 51173204).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with the help of the contributors. The final version of the paper was approved by all of the authors.

Corresponding authors

Correspondence to Jiwen Hu or Yonglu Dong.

Ethics declarations

Competing interest

The authors state that there are no conflicting interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 94 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Hu, J., Dong, Y. et al. Thermal runaway risk of 2,2′-azobis(2-methylbutyronitrile) under the process situations. J Therm Anal Calorim 148, 6133–6150 (2023). https://doi.org/10.1007/s10973-023-12113-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12113-4

Keywords

Navigation