Skip to main content
Log in

Thermal analysis of Co-Zn ferrite synthesis from milled powders

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of mechanical activation of the mixture of Fe2O3-Co3O4-ZnO reagents on thermal synthesis of cobalt-zinc ferrite (Co0.5Zn0.5Fe2O4) was studied using X-ray powder diffraction and thermal analyses. The initial oxide powders were mixed using a Retsch Emax high energy ball mill to homogenize the mixture and enhance the reactivity. Mechanical activation was performed in air for 30 and 60 min. Thermal synthesis was performed at 900 °C for 4 h. X-ray diffraction analysis revealed an increase in the intensity of reflections that belong to spinel phases at increased rotational speed of the grinding vials and grinding duration. The patterns of formation of the final ferrite phase depending on the modes of mechanical pre-activation were showed by thermal analysis. It was shown that mechanical pre-activation of a mixture of initial reagents in a high-energy ball mill facilitates the formation of the ferrite phase of the given composition. The Curie temperature was determined for Co0.5Zn0.5Fe2O4 ferrite (~ 178 °C) by thermal synthesis. Kindly check and confirm whether the corresponding author is correctly identified. Corresponding author identified correctl

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu H, Ji P, Han X. Rheological phase synthesis of nanosized α-LiFeO2 with higher crystallinity degree for cathode material of lithium-ion batteries. Mater Chem Phys. 2016;183:152–7.

    Article  CAS  Google Scholar 

  2. Kurian M, Thankachan S. Structural diversity and applications of spinel ferrites core-shell nanostructures-a review. Open Ceram. 2021;8:100179.

    Article  CAS  Google Scholar 

  3. Rani R, MujasamBatoo K, Sharma P, Anand G, Kumar G, Bhardwaj S, Singh M. Structural, morphological and temperature dependent electrical traits of Co0.9Zn0.1InxFe2xOa spinel nano-ferrites. Ceram Int. 2021;47:30902–10.

    Article  CAS  Google Scholar 

  4. GaunsDessai PP, Verenkar VMS. Synthesis and characterization of Ni0.7xMnxZn0.3Fe2(C4H2O4)3·6N2H4 (x=0.1–0.6): a precursor for the synthesis of nickel-manganese-zinc ferrites. J Therm Anal Calorim. 2020;142:1399–411.

    Article  CAS  Google Scholar 

  5. Guo J, Zhang H, He Z, Li S, Li Z. Electrical properties and temperature sensitivity of Mo-modified MnFe2O4 ceramics for application of NTC thermistors. J Mater Sci Mater Electron. 2018;29:2491–9.

    Article  CAS  Google Scholar 

  6. Sutradhar S, Bandyopadhyay A. Modulation of magnetic and dielectric response of mullite coated Cu-substituted Co-Zn-ferrite multiphase nanocomposites. Mater Sci Eng: B. 2021;266:115079.

    Article  CAS  Google Scholar 

  7. Gómez-Polo C, Recarte V, Cervera L, Beato-López JJ, López-García J, Rodríguez-Velamazán JA, Ugarte MD, Mendonça EC, Duque JGS. Tailoring the structural and magnetic properties of Co-Zn nanosized ferrites for hyperthermia applications. J Magn Magn Mater. 2018;465:211–9.

    Article  Google Scholar 

  8. Andhare DD, Patade SR, Kounsalye JS, Jadhav KM. Effect of Zn doping on structural, magnetic and optical properties of cobalt nanoparticles synthesized via. Co-precipitation method. Phys B Condens Matter. 2020;583:412051.

    Article  CAS  Google Scholar 

  9. Muntean C, Bozdog M, Duma S, Stefanescu M. Study on the formation of Co1xZnxFe2O4 system using two low—temperature synthesis methods. J Therm Anal Calorim. 2016;123:117–26.

    Article  CAS  Google Scholar 

  10. Mondal R, Dey S, Majumder S, Poddar A, Dasgupta P, Kumar S. Study on magnetic and hyperfine properties of mechanically milled Ni0.4Zn0.6Fe2O4 nanoparticles. J Magn Magn Mater. 2018;448:135–45.

    Article  CAS  Google Scholar 

  11. Azouaoui A, Elhaoua M, Salmi S, Benzakour N, Hourmatallah A, Bouslykhane K. Structural and magnetic properties of Co-Zn ferrites: density functional theory calculations and high-temperature series expansions. Comput Condens Matter. 2020;23:e00454.

    Article  Google Scholar 

  12. El Foulani AH, Aamouche A, Mohseni F, Amaral JS, Tobaldi DM, Pullar RC. Effect of surfactans on the optical and magnetic properties of cobalt-zinc ferrite Co0.5Zn0.5FeO4. J Alloys Compd. 2019;774:1250–9.

    Article  Google Scholar 

  13. Sundararajan M, Kennedy LJ, Vijaya JJ, Aruldoss U. Microwave combustion synthesi of Co1-xZnxFe2O4 (0≤x≤0.5): structural, magnetic, optical and vibrational spectroscopic studies. Spectrochim Acta Part A Mol Biomol Spectrosc. 2015;140:421–30.

    Article  CAS  Google Scholar 

  14. Atif M, Asghar MW, Nadeem M, Khalid W, Ali Z, Badshah S. Synthesis and investigation of structural, magnetic and dielectric properties of zinc substituted cobalt ferrites. J Phys Chem Solid. 2018;123:36–42.

    Article  CAS  Google Scholar 

  15. He HY. Comparison study on magnetic property of Co0.5Zn0.5Fe2O4 powder by template-assisted sol–gel and hydrothermal methods. J Sci Mater Electron. 2012;23:995–1000.

    Article  CAS  Google Scholar 

  16. Sarkar K, Mondal R, Dey S, Majumder S, Kumar S. Presence of mixed magnetic phase in mechanically milled Co0.5Zn0.5Fe2O4: a study on structural, magnetic and hyperfine properties. J Magn Magn Mater. 2019;487:165303.

    Article  CAS  Google Scholar 

  17. Filipović S, Obradović N, Marković S, Đorđević A, Balać I, Dapačević A, Rogan J, Pavlović V. Physical properties of sintered alumina doped with different oxides. Sci Sinter. 2018;50:409–19.

    Article  Google Scholar 

  18. Mao Z, Xiong L, Liu S. The formation of the complex oxide in Ni-based alloy powder during mechanical milling and heat treatment. J Alloys Compd. 2021;25:160333.

    Article  Google Scholar 

  19. Hu J, Zhang F, Wang W, Fu Z, Zhang J. Effect of impurities introduced by ball milling on hot pressed boron carbide. J Eur Ceram Soc. 2019;39:2874–81.

    Article  CAS  Google Scholar 

  20. Dwivedi SP, Saxena A, Sharama S, Singh G, Singh J, Mia M, Chattopadhyaya S, Pramanik A, Pimenov DY, Wojciechoski S. Effect of ball—milling process parameters on mechanical properties of Al/Al2O3/collagen powder composite using statistical approach. J Mater Res Technol. 2021;15:2918–32.

    Article  CAS  Google Scholar 

  21. Sukmarani G, Kusumaningrum R, Noviyanto A, Fauzi F, Habieb AM, Amal MI, Rochman NT. Synthesis of manganese ferrite from manganese ore prepared by mechanical milling and its application as an inorganic heat—resistant pigment. J Mater Res Technol. 2020;9:8497–506.

    Article  CAS  Google Scholar 

  22. Tanna AR, Joshi HH. Influence of mechanical milling on structural and magnetic properties of Cu2+ substituted MnFe2O4. Indian J Phys. 2016;90:981–9.

    Article  CAS  Google Scholar 

  23. Lysenko EN, Surzhikov AP, Nikolaev EV, Vlasov VA. Thermal analysis study of LiFeO2 formation from Li2CO3-Fe2O3 mechanically activated reagents. J Therm Anal Calorim. 2018;134:81–7.

    Article  CAS  Google Scholar 

  24. Nikolaev EV, Lysenko EN, Surzhikov AP, Ghyngazov SA, Bordunov SV, Nikolaeva SA. Dilatometric and kinetic analysis of sintering Li-Zn ferrite ceramics from milled reagents. J Therm Anal Calorim. 2020;142:1783–9.

    Article  CAS  Google Scholar 

  25. Samaila BW, Mansor H, Wan Y, Zulkifly A. Sintering temperature dependence of room temperature magnetic and dielectric properties of Co0.5Zn0.5Fe2O4 prepared using mechanically alloyed nanoparticles. J Magn Magn Mater. 2010;322:686–91.

    Article  Google Scholar 

  26. Wang G, Min X, Peng N, Wang Z. The isothermal kinetics of zinc ferrite reduction with carbon monoxide. J Therm Anal Calorim. 2021;146:2253–60.

    Article  CAS  Google Scholar 

  27. Bhosale DN, Choudhari ND, Sawant SR, Patil VY, Kulkarni PL, Kelkar VD. Thermoanalytitical study of Cu-Mg-Zn ferrites. J Therm Anal Calorim. 1999;55:851–9.

    Article  CAS  Google Scholar 

  28. Astafyev AL, Lysenko EN, Surzhikov AP, Nikolaev EV, Vlasov VA. Thermomagnetometric analysis of nickel-zinc ferrites. J Therm Anal Calorim. 2020;142:1775–81.

    Article  CAS  Google Scholar 

  29. Nikolaev EV, Lysenko EN, Surzhikov AP. Solid-phase formation of Li-Zn ferrite under high-energy impact. Mater Sci Forum. 2019;970:250–6.

    Article  Google Scholar 

  30. Gallagher PK. Thermomagnetometry. J Therm Anal Calorim. 1997;49:33–44.

    Article  CAS  Google Scholar 

  31. Ramana Reddy AV, Ranga Mohan G, Ravinder D, Boyanov BS. High-frequency dielectric behavior of polycrystalline zinc substituted cobalt ferrite. J Mater Sci. 1999;34:3169–76.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Science Foundation (Grant No. 19-72-10078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniy V. Nikolaev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, E.V., Lysenko, E.N., Surzhikov, A.P. et al. Thermal analysis of Co-Zn ferrite synthesis from milled powders. J Therm Anal Calorim 148, 1455–1462 (2023). https://doi.org/10.1007/s10973-022-11807-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11807-5

Keywords

Navigation