Skip to main content
Log in

Influence of mechanical milling on structural and magnetic properties of Cu2+ substituted MnFe2O4

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Polycrystalline ceramic powders of copper doped manganese ferrite (Mn1−xCuxFe2O4, x = 0.25, 0.50 and 0.75) synthesized by ceramic technique have been subjected to high-energy ball-milling to study the influence of mechanical milling on structural and magnetic properties through X-ray diffraction, scanning electron microscopy, fourier transform infrared spectroscopy and magnetization measurements. The compositional stoichiometry has been ascertained by energy dispersive analysis of X-rays mapping before commencement of high-energy ball milling of the powders. The X-ray diffraction patterns of all as prepared specimens show cubic (fcc) spinel structure with no traces of any impurity of ingredients or unexpected structural phase. The Jahn–Teller (JT) structural distortion evolves after 30 h of prolonged ball milling in all the samples, in fact the tetragonal distortion of the unit cell appears in the sample with x = 0.75 just after 18 h of milling duration. The saturation magnetization at 77 K temperature in the peak field of 5 kOe has been measured for each specimen and the Curie temperatures have been determined through thermal variation of low field (0.5 Oe) AC susceptibility. Infrared spectra also reflect the JT distortion of the unit cell due to ball milling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y Pu, X Tao, J Zhai and J F Chen Mater. Res. Bull. 45 616 (2010)

    Article  Google Scholar 

  2. Y M Z Ahmed, M M Hessien, M M Rashad and I A Ibrahim J. Magn. Magn. Mater. 321 181 (2009)

    Article  ADS  Google Scholar 

  3. T Zhang, G Li, T Qian, J F Qu, X Q Xiang and X G Li J. Appl. Phys. 100 094324 (2006)

    Article  ADS  Google Scholar 

  4. L Fei, X Dan, G M Xing, H S Park and T Fujita Trans. Nonferrous Met. Soc. China 17 1444 (2007)

    Google Scholar 

  5. B J Evans and S S Hafner J. Appl. Phys. 39 694 (1968)

    Article  ADS  Google Scholar 

  6. M Feng, A Yang, X Zuo, C Vittoria and V G Harris J. Appl. Phys. 107 09A521 (2010)

    Google Scholar 

  7. M M Rashad, R M Mohamed, M A Ibrahim, L F M Ismail and E A Abdel-Aal Adv. Powder Technol. 23 315 (2012)

    Article  Google Scholar 

  8. Y Zhu and Q Wu J. Nanoparticle Res. 1(3) 393 (1999)

    Article  Google Scholar 

  9. G F Goya, H R Rechenberg and J Z Jiang J. Appl. Phys. 84(2) 1101 (1998)

    Article  ADS  Google Scholar 

  10. J F Scott Science 315 954 (2007)

    Article  ADS  Google Scholar 

  11. A R Tanna, U N Trivedi, M C Chhantbar and H H Joshi Indian J. Phys 87(11) 1087 (2013)

    Article  ADS  Google Scholar 

  12. A M Kapitonov and E M Smokotin Phys. Status Solidi (a) 34 K47 (1976)

    Article  ADS  Google Scholar 

  13. S S D Shenoy, P A Joy and M R Anantharaman J. Magn. Magn. Mater. 269 217(2004)

    Article  ADS  Google Scholar 

  14. T Sato IEEE Trans. Magn. Magn. 6 795 (1970)

    Article  ADS  Google Scholar 

  15. T F Marinca, I Chicinas and O Isnard Ceram. Inter. 38 1951 (2012)

    Article  Google Scholar 

  16. A R Tanna and H H Joshi World Acad. of Sci. Engg. and Techno. 75 74 (2013)

  17. A Globus, H Pascard and V Cagan J. Phys. Suppl. 438(c-1) 439 (1977)

  18. S A Mazen, M H Abdalla, R I Nakhla, H M Zaki and F Metawe Mater. Chem. Phys. 34 35 (1993)

    Article  Google Scholar 

  19. [19] J Z Jiang, G F Goya and H R Rechenberg J. Phys.: Condens. Matter 11 4063 (1999)

    ADS  Google Scholar 

  20. T F Marinca, I Chicinas, O Isnard, V Pop and F Popa J. Alloys Compd. 509 7931 (2011)

    Article  Google Scholar 

  21. L Néel Ann. Phys. 3 137 (1948)

    Google Scholar 

  22. S J Stewart, M J Tueros, G Cernicchiaro and R B Scorzelli Solid State Commun. 129 347 (2004)

    Article  ADS  Google Scholar 

  23. B D Cullity and C D Graham Introduction to Magnetic Materials 2nd ed. (New Jersey; IEEE Press & Wiley) (2009)

  24. A Rosencwaig Can. J. Phys. 48 2857 (1970)

    Article  ADS  Google Scholar 

  25. R H Kodama, A E Berkowitz, E J McNiff and S Foner Phys. Rev. Lett. 77 394 (1996)

    Article  ADS  Google Scholar 

  26. R H Kodama and A E Berkowitz Phys. Rev. B 59 6321 (1999)

    Article  ADS  Google Scholar 

  27. J P Chen, C M Sorensen, K J Klabunde, G C Hadjipanayis, E Devlin and A Kostikas Phys. Rev. B. 54(13) 9288 (1996)

    Article  ADS  Google Scholar 

  28. R D Waldron Phys. Rev. 99 1727 (1955)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Tanna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanna, A.R., Joshi, H.H. Influence of mechanical milling on structural and magnetic properties of Cu2+ substituted MnFe2O4 . Indian J Phys 90, 981–989 (2016). https://doi.org/10.1007/s12648-015-0825-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0825-2

Keywords

PACS Nos

Navigation