Skip to main content
Log in

Synthesis of entropy generation in Cu–Al2O3 water-based thin film nanofluid flow

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research communication, assessment of entropy in the MHD flow of a hybrid nanofluid (Cu–Al2O3 /H2O) and a mono-nanofluid (Cu–H2O) of a thin film across an elongated plane with radiative heat is explored. Computational solutions of the equations describing the model are derived employing scaling analysis followed by RKF-45-based shooting technique with MATLAB software. A parametric analysis pertaining to the impressions of diverse physical parameters on the flow features is deliberated. The quantitative differences of the outcomes between the Cu–Al2O3 /H2O and Cu–H2O are brought out. Validation of the derived results of the current investigation ascertains a greater accuracy of the numerical code adopted in comparison with those results available in the literature. The temperature and the rate of thermal diffusion of the hybrid nanofluid are more prominent than those in the Cu–H2O case. Blade-shaped particles yield a temperature enhancement of 42.8% higher than the case of spherical-shaped particles in hybrid nanofluid, while the mono-nanofluid experiences a 22.2% enhancement. Free surface temperature of Cu–H2O with blade-shaped nanomaterials is 32.2% more than that in the spherical-shaped particles, while it is doubled in Cu–Al2O3 /H2O. Radiative emission has a diminishing impact on the entropy generation in both nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

(b, c):

Positive constants [s1]

\({\text{Br}}\) :

Brinkman number \(= \frac{{\mu_{{\text{f}}} U^{2} }}{{k_{{\text{f}}} \left( {T_{{\text{s}}} - T_{0} } \right)}}\)

\(B_{0}\) :

Constant magnetic strength [Wb m2]

\(C_{{\text{p}}}\) :

Specific heat at constant pressure [J kg1 K1]

\(f\) :

Dimensionless stream function

\(k\) :

Thermal conductivity of the fluid [W m1 K1]

\(k^{*}\) :

Absorption coefficient [m1]

\(M\) :

Magnetic field parameter \(= \frac{{\sigma_{{\text{f}}} B_{0}^{2} }}{{b\rho_{{\text{f}}} }}\)

Nr:

Thermal radiation parameter \(= \frac{{16\sigma^{*} T_{0}^{3} }}{{3k_{{\text{f}}} k^{*} }}\)

\({\text{Pr}}\) :

Prandtl number \(= \frac{{\left( {\mu C_{{\text{p}}} } \right)_{{\text{f}}} }}{{k_{{\text{f}}} }}\)

\({\text{Re}}_{{\text{x}}}\) :

Reynolds number \(= \frac{{{\text{Ux}}}}{{\nu_{{\text{f}}} }}\)

\(S\) :

Unsteadiness parameter \(= \frac{c}{b}\)

\(S_{{\text{f}}}\) :

Shape factor

\(S_{0}\) :

Characteristic entropy generation rate \(= \frac{{k_{{\text{f}}} \left( {T_{{\text{s}}} - T_{0} } \right)^{2} }}{{x^{2} T_{0}^{2} }}\)

T :

Fluid Temperature [K]

\(T_{{{\text{ref}}}}\) :

Constant reference temperature [K]

\(T_{\text{s}}\) :

Stretching sheet’s temperature [K]

\(T_{\infty }\) :

Ambient fluid temperature [K]

\(T_{0}\) :

Temperature at the slit [K]

\(u, v\) :

Velocity components along x, y-axis [m s1

\(\mu\) :

Dynamic viscosity [kg m1 s1]

\(\nu\) :

Kinematic viscosity [m2 s1]

\(\rho\) :

Fluid density [kg m3]

\(\sigma\) :

Electrical conductivity [S m1]

\(\sigma^{*}\) :

Stefan-Boltzmann constant [W m2 K4]

\(\phi_{1}\) :

Volume fraction of copper

\(\phi_{2}\) :

Volume fraction of alumina

\(\theta\) :

Dimensionless temperature

\(\xi\) :

Film thickness

\(\psi\) :

Stream function

\(\Omega\) :

Dimensionless temperature ratio \(= \frac{{\left( {T_{{\text{s}}} - T_{0} } \right)}}{{T_{0} }}\)

\({\text{nf}}\) :

Nanofluid

\({\text{hnf}}\) :

Hybrid nanofluid

\(f\) :

Fluid

\(s_{1}\) :

Copper

\(s_{2}\) :

Alumina

\(^{\prime}\) :

Differentiation with respect to \(\eta\)

References

  1. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ-Fed. 1995;231:99–106.

    CAS  Google Scholar 

  2. Mahdi R, Mohammad AN. Modeling thermal conductivity of Ag/water nanofluid by applying a mathematical correlation and artificial neural network. Int J of Low-Carbon Technol. 2019;14:468–74.

    Article  Google Scholar 

  3. Mahdi R, Mohammad AN, Mohammad HA, Giulio L. A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids. J Therm Anal Calorim. 2019;138:827–43.

    Google Scholar 

  4. Mamdouh EHA, Mohammad AN. Chapter 3—Heat exchangers and nanofluids. Design and performance optimization of renewable energy systems. 2021;33–42.

  5. Turcu R, Darabont A, Nan A, Aldea N, Macovei D, Bica D, Vekas L. New polypyrrole-multiwall carbon nanotubes hybrid materials. J Optoelectron Adv Mater. 2006;8:643–7.

    CAS  Google Scholar 

  6. Jana S, Salehi-Khojin A, Zhong WH. Enhancement of fluid thermal conductivity by the addition of single and hybrid Nano-additives. Thermochim Acta. 2007;462:45–55.

    Article  CAS  Google Scholar 

  7. Devi SU, Devi SPA. Heat transfer enhancement of Cu–Al2O3/water hybrid nanofluid flow over a stretching sheet. J Niger Math Soc. 2017;36:419–33.

    Google Scholar 

  8. Ghadikolaei SS, Hosseinzadeh K, Hatami M, Ganji DD. MHD boundary layer analysis for micropolar dusty fluid containing Hybrid nanoparticles (Cu-Al2O3) over a porous medium. J Mol Liq. 2018;268:813–23.

    Article  CAS  Google Scholar 

  9. Ghadikolaei SS, Gholinia M, Hoseini ME, Ganji DD. Natural convection MHD flow due to MoS2–Ag nanoparticles suspended in C2H6O2/H2O hybrid base fluid with thermal radiation. J Taiwan Inst Chem Eng. 2019;97:12–23.

    Article  CAS  Google Scholar 

  10. Bejan A. A study of entropy generation in fundamental convective heat transfer. ASME J Heat Transf. 1979;101:718–25.

    Article  Google Scholar 

  11. Bejan A. The thermodynamic design of heat and mass transfer processes and devices. Heat Fluid flow. 1987;8:258–76.

    Article  CAS  Google Scholar 

  12. Matin MH, Nobari MRH, Jahangiri P. Entropy analysis in mixed convection MHD flow of nanofluid over a non-linear stretching sheet. J Therm Sci Technol. 2012;7:104–19.

    Article  Google Scholar 

  13. Mkwizu MH, Makinde OD. Entropy generation in a variable viscosity channel flow of nanofluids with convective cooling. Comptes Rendus Mec. 2015;343:38–56.

    Article  Google Scholar 

  14. Butt AS, Ali A, Mehmood A. Numerical investigation of magnetic field effects on entropy generation in viscous flow over a stretching cylinder embedded in a porous medium. Energy. 2016;99:237–49.

    Article  Google Scholar 

  15. Sarojamma G, Vajravelu K, Sreelakshmi K. A study on entropy generation on thin film flow over an unsteady stretching sheet under the influence of magnetic field, thermocapillarity, thermal radiation and internal heat generation/absorption. Commun Numer Anal. 2017;2017:141–56.

    Article  Google Scholar 

  16. Hussain S, Ahmed SE, Akbar T. Entropy generation analysis in MHD mixed convection of hybrid nanofluid in an open cavity with a horizontal channel containing an adiabatic obstacle. Int J Heat Mass Transfer. 2017;114:1054–66.

    Article  CAS  Google Scholar 

  17. Afridi MI, Qasim M. Entropy generation and heat transfer in boundary layer flow over a thin needle moving in a parallel stream in the presence of non-linear Rosseland radiation. Int J Therm Sci. 2018;123:117–28.

    Article  Google Scholar 

  18. Tahar T, Chamkha AJ. Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block. Int J Numer Methods Heat & Fluid Flow. 2020;30:1115–36.

    Article  Google Scholar 

  19. Yusuf TA, Mabood F, Khan WA, Gbadeyan JA. Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: Darcy-Forchhiemer’s model. Alex Eng J. 2020;59:5247–61.

    Article  Google Scholar 

  20. Abbas SZ, Ijaz Khan M, Kadry S, Khan WA, Israr-Ur- Rehman M, Waqas M. Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy. Comput Methods Progr Biomed. 2020;190: 105362.

    Article  CAS  Google Scholar 

  21. Wang CY. Liquid film on an unsteady stretching surface. Q Appl Math. 1990;48:601–10.

    Article  Google Scholar 

  22. Nadeem S, Awais M. Thin film flow of an unsteady shrinking sheet through medium with variable viscosity. Phys Lett A. 2008;372:4965–72.

    Article  CAS  Google Scholar 

  23. Abel MS, Mahesha N, Tawade J. Heat transfer in a liquid film over an unsteady stretching surface with viscous dissipation in presence of external magnetic field. Appl Math Mod. 2009;33:3430–41.

    Article  Google Scholar 

  24. Vajravelu K, Prasad KV, Ng CO. Unsteady flow and heat transfer in a thin film of Ostwald–de Waele liquid over a stretching surface. Commun Nonlinear Sci Numer Simul. 2012;17(11):4163–73.

    Article  Google Scholar 

  25. Megahed AM. Effect of slip velocity on Casson thin film flow and heat transfer due to unsteady stretching sheet in presence of variable heat flux and viscous dissipation. Appl Math Mech Engl Ed. 2015;36:1273–84.

    Article  Google Scholar 

  26. Sreelakshmi K, Sarojamma G. Effect of thermocapillarity and variable thermal conductivity on the heat transfer analysis of a non-Newtonian liquid thin film over a stretching surface in the presence of thermal radiation and heat source/sink. Nonlinear Eng. 2018;7:151–61.

    Article  Google Scholar 

  27. Sandhya G, Malleswari K, Sarojamma G, Sreelakshmi K, Satya Narayana PV. Unsteady Casson nanofluid thin film flow over a stretching sheet with viscous dissipation and chemical reaction. Eur Phys J Spec Topics. 2021;230:1381–90.

    Article  Google Scholar 

  28. Narayana M, Sibanda P. Laminar flow of a nanoliquids film over an unsteady stretching sheet. Int J of Heat Mass Transfer. 2012;55:7552–60.

    Article  Google Scholar 

  29. Sadiq MA. Heat transfer of a nanoliquids thin film over a stretching sheet with surface temperature and internal heat generation. J Therm Anal Calorim. 2021;143:2075–83.

    Article  CAS  Google Scholar 

  30. Anantha Kumar K, Sandeep N, Sugunamma V, Animasaun IL. Effect of irregular heat source/sink on the radiative thin film flow of MHD hybrid Ferro fluid. J Therm Anal Calorim. 2019;139:2145–53.

    Article  Google Scholar 

  31. Gul T, Muhammad B, Muhammad S, Safyan M, Phatiphat T. Thin film flow of the water-based carbon nanotubes hybrid nanofluid under the magnetic effects. Heat Transfer. 2020;49:3211–27.

    Article  Google Scholar 

  32. Bejan A. Entropy generation through heat and fluid flow. John Wiley and Sons Toronto Canada; 1994.

  33. Wang C. Analytical solutions for a liquid film on an unsteady stretching surface. Heat Mass Transfer. 2006;42:759–66.

    Article  Google Scholar 

  34. Crane LJ. Flow past a stretching plate. ZAMP. 1970;21:645–7.

    Google Scholar 

  35. Yashkun U, Zaimi K, Ishak A, Pop I, Sidaoui R. Hybrid nanofluid flow through an exponentially stretching/shrinking sheet with mixed convection and Joule heating. Int J of Numer Methods Heat & Fluid Flow. 2021;31:1930–50.

    Article  Google Scholar 

  36. Raza J, Rohni AM, Omar Z. Numerical investigation of copper-water (Cu-water) nanofluid with different shapes of nanoparticles in a channel with stretching wall: slip effects. Math Comput Appl. 2016;21:43.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the constructive suggestions received from the Reviewers and the Editor which led to definite improvement in the paper. Also, the authors thanks are due to Professor M. Taylor for reading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sarojamma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreelakshmi, K., Sandhya, G., Sarojamma, G. et al. Synthesis of entropy generation in Cu–Al2O3 water-based thin film nanofluid flow. J Therm Anal Calorim 147, 13509–13521 (2022). https://doi.org/10.1007/s10973-022-11540-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11540-z

Keywords

Navigation