Skip to main content
Log in

A state of art review on future low global warming potential refrigerants and performance augmentation methods for vapour compression based mobile air conditioning system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The use of vapor compression system-based air-conditioning units is predominant in conventional fossil-fueled and electric vehicles. Mobile air-conditioning (MAC) units play a significant role in direct and indirect CO2 emissions from vehicles. Refrigerant and component efficiency are the major factors that determine CO2 emissions from air-conditioning units. Therefore, it is essential to enhance the performance of MAC systems using environmentally friendly refrigerants that satisfy environmental requirements. In this study, we demonstrated the measures taken to minimize CO2 emissions by replacing high global warming potential HFC-134a, charge optimization methods, and performance enhancement strategies. HFO-1234yf could be better alternative for retrofitting HFC-134a, although it exhibited a slightly poor performance with mid-flammability. Mixtures of hydrocarbon-based refrigerants are suitable for secondary loop applications, and R-744 is the best option in cold climates. During charge optimization, the subcooling and superheating plateau methods were mostly adopted. To enhance system performance, most researchers have used variable displacement compressors, efficient microchannel evaporators, integrated received drier condensers, and suction line heat exchangers. Recently, Nano-seeded lubricants have been used in some MAC applications; however, further research is required on the condensation and evaporation aspects. The present review could be very helpful for researchers and manufacturers in developing MAC systems with lower CO2 emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ASHRAE:

American Society of Heating, Refrigerating and Air-Conditioning Engineers

CFC:

Chlorofluorocarbon

COP:

Coefficient of performance

DBT:

Dry bulb temperature

DSC:

Degree of subcooling

DSH:

Degree of superheating

EDC:

Electric-driven compressor

EEV:

Electronic expansion valve

EV:

Electric vehicle

FDC:

Fixed displacement compressors

FGB:

Flash gas bypass

GWP:

Global warming potential

HC:

Hydrocarbon

HCFC:

Hydrochlorofluorocarbon

HFC:

Hydrofluorocarbon

HFO:

Hydrofluoroolefin

HOC:

Heat of combustion

HVAC:

Heating, ventilation, and air-conditioning

ICC:

Intermediate cooling compressor

ICE:

Internal combustion engine

IRD:

Integrated received drier

LFL:

Lower flammability level

LV:

Liquid–vapor

MAC:

Mobile air-conditioning

ODP:

Ozone depletion potential

OEL:

Occupational exposure limit

OT:

Orifice tube

PAG:

Polyalkylene glycol

PHE:

Plate heat exchanger

POE:

Polyolester

RH:

Relative humidity

SAE:

Society of Automotive Engineers

SLHX:

Suction line heat exchanger

SLP:

Secondary loop

TEWI:

Total equivalent warming impact

TFA:

Trifluoroacetic acid

TXV:

Thermostatic expansion valve

UNEP:

United Nations Environment Programme

VCR:

Vapor compression refrigeration

VDC:

Variable displacement compressors

Reference:s

  1. Lambert MA, Jones BJ. Automotive adsorption air conditioner powered by exhaust heat. Part 1: conceptual and embodiment design. Proc Inst Mech Eng Part D J Automobile Eng2006; 220(7):959–972.

  2. Chen J, Zhao Y, Qi Z. New developments in mobile air conditioning systems in China. Front Energy. 2011;5:53–8.

    Article  Google Scholar 

  3. Farooq M, Hamayoun A, Naqvi M, Nawaz S, Usman M, Naqvi SR, Imran M, Nadeem M, Razi A, Turan A, Pettinau A, Andresen JM. Thermodynamic performance analysis of hydrofluoroolefin (HFO) refrigerants in commercial air-conditioning systems for sustainable environment. Processes. 2020;8:187.

    Article  CAS  Google Scholar 

  4. UNEP (2016). The Kigali amendment to the montreal protocol: HFC phase-down. 28th meeting of parties to Montreal Protocol, October 10–16, Kigali, Rwanda

  5. European Parliament (2009). Setting emission performance standards for new passenger cars as part of the community‘s integrated approach to reduce CO2 emissions from light-duty vehicles. regulation (EC) no. 443/2009 of the European Parliament and of the Council of 23 April 2009. Off J Eur Union.

  6. Johnson EP, Banks PE, Sharratt PN. Automobile air conditioning: a case study of CFC replacements. Int J Life Cycle Assess. 1998;3(2):75–9.

    Article  CAS  Google Scholar 

  7. Taddonio KN. Immediate opportunity for large greenhouse gas emissions reductions with new mobile air conditioning refrigerants. J Integr Environ Sci. 2010;7(S1):175–86.

    Article  Google Scholar 

  8. Lee MY, Lee DY. Review on conventional air conditioning, alternative refrigerants, and CO2 heat pumps for vehicles. Adv Mech Eng 2013: 713924.

  9. Kumar GR. Sustainability of alternative material of R-134a in mobile air-conditioning system: a review. Mater Today Proc. 2017;4(2):112–8.

    Article  Google Scholar 

  10. Mohanraj M, Abraham JDAP. Environment friendly refrigerant options for automobile air conditioners: a review. J Therm Anal Calorim. 2022;147:47–72.

    Article  CAS  Google Scholar 

  11. Ravikumar A, Karwall N, Shah R. Recent Developments in Automotive Condensers and Receiver-Dryer Technology. SAE technical paper 2005: 2005–01–1770

  12. Sukri MF, Musa MN, Senawi MY, Nasution H. Achieving a better energy efficient automotive air conditioning system: a review of potential technologies and strategies for vapour compression refrigeration cycle. Energ Effi. 2015;8:1201–29.

    Article  Google Scholar 

  13. Shah RK. Automotive air-conditioning systems— historical developments, the state of technology, and future trends. Heat Transfer Eng. 2009;30(9):720–39.

    Article  CAS  Google Scholar 

  14. Bentrcia M, Alshitawi M, Omar H. Developments of vapor-compression systems for vehicle air-conditioning: a review. Adv Mech Eng. 2017;9(8):1–15.

    Article  Google Scholar 

  15. Bentrcia M, Alshitawi M, Omar H. Developments of alternative systems for automobile air conditioning: a review. J Mech Sci Technol. 2018;32:1857–67.

    Article  Google Scholar 

  16. Kang BH, Lee HJ. A review of recent research on automotive HVAC systems for EVs. Int J Air-Cond Refrig. 2017;25(4):1730003.

    Article  Google Scholar 

  17. Zhang Z, Wang J, Feng X, Chang L, Chen Y, Wang X. The solutions to electrical vehicle air conditioning systems: a review. Renew Sustain Energy Rev. 2018;91:443–63.

    Article  Google Scholar 

  18. Pabon JJG, Khosravi A, Belman-Flores JM, Machado L, Revellin R. Applications of refrigerant R1234yf in heating, air conditioning and refrigeration systems: a decade of researches. Int J Refrig. 2020;118:104–13.

    Article  CAS  Google Scholar 

  19. Craig T, Andersen S, Chen J, Chowdhury S, Ferraris W, Hu J, Kapoor S, Malvicino S, Nagarhalli PV, Sherman N, Taddonio K. Latest Options for Replacing HFC-134a Refrigerantin MACs. SAE technical paper 2020: 2020–01–1254.

  20. Nair V. HFO refrigerants: a review of its present status and future prospects. Int J Refrig. 2021;122:156–70.

    Article  CAS  Google Scholar 

  21. ANSI/ASHRAE Standard 34 (2013). Designation and safety classification of refrigerants. ISSN: 1041–2336

  22. Boutonnet JC, Bingham P, Calamari D, Rooij CD, Franklin J, Kawano T, Libre JM, McCul-Loch A, Malinverno G, Odom JM, Rusch GM. Environmental risk assessment of trifluoroacetic acid. Hum Ecol Risk Assess Int J. 1999;5(1):59–124.

    Article  CAS  Google Scholar 

  23. Kajihara H. Estimation of environmental concentrations and deposition fluxes of R-1234yf and its decomposition products emitted from air conditioning equipment to atmosphere. In international symposium on next-generation air conditioning and refrigeration technology 2010, Tokyo

  24. Luecken DJ, Waterland RL, Papasavva S, Taddonio KN, Hutzell WT, Rugh JP, Andersen SO. Ozone and TFA impacts in North America from degradation of 2, 3, 3, 3-tetrafluoropropene (HFO-1234yf), a potential greenhouse gas replacement. Environ Sci Technol. 2010;44(1):343–8.

    Article  CAS  Google Scholar 

  25. Lewandowski TA. Additional risk assessments of alternative refrigerant R1234yf. SAE International 2013; CRP1234–4 report

  26. Russell MH, Hoogeweg G, Webster EM, Ellis DA, Waterland RL, Hoke RA. TFA from HFO-1234yf: accumulation and aquatic risk in terminal water bodies. Environ Toxicol Chem. 2012;31(9):1957–65.

    Article  CAS  Google Scholar 

  27. Kazil J, McKeen S, Kim SW, Ahmadov R, Grell GA, Talukdar RK, Ravishankara AR. Deposition and rainwater concentrations of trifluoroacetic acid in the United States from the use of HFO-1234yf. J Geophys Res Atmos. 2014;119(24):14059–79.

    Article  CAS  Google Scholar 

  28. Solomon KR, Velders GJ, Wilson SR, Madronich S, Longstreth J, Aucamp PJ, Bornman JF. Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: relevance to substances regulated under the Montreal and Kyoto Protocols. J Toxicol Environ Health, Part B. 2016;19(7):289–304.

    Article  CAS  Google Scholar 

  29. Yoo SY, Lee DW. Experimental study on performance of automotive air conditioning system using R-152a refrigerant. Int J Automot Technol. 2009;10(3):313–20.

    Article  Google Scholar 

  30. Serevina V, Azhar AA, Sutandi T, Sumeru K. Effect of engine speed on the performance of automotive air conditioning system using R134a and R152a as refrigerants. IOP Conf Ser J Phys. 2019;1150: 012051.

    Article  CAS  Google Scholar 

  31. Ghodbane M. An investigation of R152a and hydrocarbon refrigerants in mobile air conditioning. SAE technical paper 1999; 1999–01–0874

  32. Mahmoud G. An investigation of R152a and hydrocarbon refrigerants in mobile air conditioning. SAE technical paper 1999; 1999–01–0874.

  33. Vaghela JK. Comparative evaluation of an automobile air—conditioning system using R134a and its alternative refrigerants. Energy Procedia. 2017;109:153–60.

    Article  CAS  Google Scholar 

  34. Direk M, Mert MS, Soylu E, Yuksel F. Experimental investigation of an automotive air conditioning system using R444A and R152a refrigerants as alternatives of R134a. J Mech Eng. 2019;65(4):212–8.

    Article  Google Scholar 

  35. Sumeru K, Sunardi C, Aziz AA, Nasution H, Abioye AM, Said MF. Comparative performance between R134a and R152a in an air conditioning system of a passenger car. J Teknol. 2016;78:1–6.

    Google Scholar 

  36. Shin JS, Kim MH. Test results of refrigerant R152a in a mobile air-conditioning system. Int J Air-Cond Refrig. 2008;16(2):44–50.

    Google Scholar 

  37. Ma Z, Liu F, Tian C, Jia L, Wu W. Experimental comparisons on a gas engine heat pump using R134a and low-GWP refrigerant R152a. Int J Refrig. 2020;115:73–82.

    Article  CAS  Google Scholar 

  38. Li G, Eisele M, Lee H, Hwang Y, Radermacher R. Experimental investigation of energy and exergy performance of secondary loop automotive air-conditioning systems using low-GWP (global warming potential) refrigerants. Energy. 2014;68:819–31.

    Article  CAS  Google Scholar 

  39. Bhatkar VW. Experimental performance of R134a and R152a using microchannel condenser. J Therm Eng. 2015;1:574–82.

    Google Scholar 

  40. Wu J, Zhou G, Wang M. A comprehensive assessment of refrigerants for cabin heating and cooling on electric vehicles. Appl Therm Eng. 2020;174: 115258.

    Article  CAS  Google Scholar 

  41. Ning Q, He G, Xiong G, Sun W, Song H. Operation strategy and performance investigation of a high-efficiency multifunctional two-stage vapor compression heat pump air conditioning system for electric vehicles in severe cold regions. Sustai Energy Technol Assess. 2021;48: 101617.

    Google Scholar 

  42. Han XH, Li P, Xu YJ, Zhang YJ, Wang Q, Chen GM. Cycle performances of the mixture HFC-161 + HFC-134a as the substitution of HFC-134a in automotive air conditioning systems. Int J Refrig. 2013;36:913–20.

    Article  CAS  Google Scholar 

  43. Bhatti MS. Enhancement of R-134a automotive air conditioning system. SAE Trans. 1999;108:1632–57.

    Google Scholar 

  44. Hamza A, Khan TA. Comparative performance of low-GWP refrigerants as substitutes for R134a in a vapor compression refrigeration system. Arab J Sci Eng. 2020;45(7):5697–712.

    Article  CAS  Google Scholar 

  45. Saravanan AL, Prabakaran R, Sidney S, Kim SC, Lal DM. Performance, environment, and cost-benefit analysis of a split air conditioning unit using HC-290 and HCFC-22. Environ Prog Sustain Energy. 2022;41(1): e13762.

    Article  CAS  Google Scholar 

  46. Sidney S, Prabakaran R, Dhasan ML. Thermal analysis on optimizing the capillary tube length of a milk chiller using DC compressor operated with HFC-134a and environment-friendly HC-600a refrigerants. Proc Inst Mech Eng, Part E J Process Mech Eng. 2020;234(4):297–307.

    Article  CAS  Google Scholar 

  47. Sidney S, Prabakaran R, Kim SC, Dhasan ML. A novel solar-powered milk cooling refrigeration unit with cold thermal energy storage for rural application. Environ Sci Pollut Res. 2022;29:6346–16370.

    Article  Google Scholar 

  48. Sidney S, Prabakaran R, Dhasan ML. Charge optimisation of a solar milk chiller with direct current compressors. Proc Inst Mech Eng Part E J Process Mech Eng. 2021;235(3):679–93.

    Article  Google Scholar 

  49. Navarro E, Martínez-Galvan IO, Nohales J, Gonzálvez-Maciá J. Comparative experimental study of an open piston compressor working with R-1234yf, R-134a and R-290. Int J Refrig. 2013;36:768–75.

    Article  CAS  Google Scholar 

  50. Sotomayor PO, Parise JAR. Characterization and simulation of an open piston compressor for application on automotive air conditioning systems operating with R134a, R1234yf and R290. Int J Refrig. 2016;61:100–16.

    Article  Google Scholar 

  51. Liu C, Zhang Y, Gao T, Shi J, Chen J, Wang T, Pan L. Performance evaluation of propane heat pump system for electric vehicle in cold climate. Int J Refrig. 2018;95:51–60.

    Article  Google Scholar 

  52. Sánchez D, Cabello R, Llopis R, Arauzo I, Catalán-Gil J, Torrella E. Energy performance evaluation of R1234yf, R1234ze(E), R600a, R290 and R152a as low-GWP R134a alternatives. Int J Refrig. 2017;74:269–82.

    Article  Google Scholar 

  53. Zhang W, Yang Z, Li J, Ren CX, Lv D, Wang J, Zhang X, Wu W. Research on the flammability hazards of an air conditioner using refrigerant R-290. Int J Refrig. 2013;36:1483–94.

    Article  CAS  Google Scholar 

  54. Prakash CR, Gautham M, Lal DM, Devotta S, Colbourne D. CFD simulation of HC-290 leakage from a split type room air conditioner. Proc Inst Mech Eng Part E J Process Mech Eng. 2021;235(6):1847–57.

    Article  Google Scholar 

  55. Zhang Y, Liu C, Wang T, Pan L, Li W, Shi J, Chen J. Leakage analysis and concentration distribution of flammable refrigerant R290 in the automobile air conditioner system. Int J Refrig. 2020;110:286–94.

    Article  CAS  Google Scholar 

  56. Wongwises S, Kamboon A, Orachon B. Experimental investigation of hydrocarbon mixtures to replace HFC-134a in an automotive air conditioning system. Energy Convers Manage. 2006;47:1644–59.

    Article  CAS  Google Scholar 

  57. Dahlan AA, Zulkifli AH, Nasution H, Aziz AA, Perang MR, Jamil HM. Performance study of hydrocarbon mixture for green vehicle air-conditioning system. Energy Procedia. 2014;61:266–9.

    Article  CAS  Google Scholar 

  58. Karthikeyan K, Somasundaram P, Sivakumar M, Saravanakumar PT. Experimental investigations on automobile air conditioners working with R134a and R290/R600 as an alternative. Therm Sci. 2017;21:515–22.

    Article  Google Scholar 

  59. Maclaine-Cross IL. Usage and risk of hydrocarbon refrigerants in motor cars for Australia and the United States. Int J Refrig. 2004;27:339–45.

    Article  CAS  Google Scholar 

  60. De Paula CH, Duarte WM, Rocha TT, de Oliveira RN, Maia AA. Optimal design and environmental, energy and exergy analysis of a vapor compression refrigeration system using R290, R1234yf, and R744 as alternatives to replace R134a. Int J Refrig. 2020;113:10–20.

    Article  Google Scholar 

  61. De Paula CH, Duarte WM, Rocha TT, de Oliveira RN, de Paoli MR, Maia AA. Thermo-economic and environmental analysis of a small capacity vapor compression refrigeration system using R290, R1234yf, and R600a. Int J Refrig. 2020;118:250–60.

    Article  Google Scholar 

  62. Liu H, Chen J, Chen Z. Experimental investigation of a CO2 automotive air conditioner. Int J Refrig. 2005;28:1293–301.

    Article  CAS  Google Scholar 

  63. Tamura T, Yakumaru Y, Nishiwaki F. Experimental study on automotive cooling and heating air conditioning system using CO2 as a refrigerant. Int J Refrig. 2005;28:1302–7.

    Article  CAS  Google Scholar 

  64. Kim SC, Kim MS, Hwang IC, Lim TW. Heating performance enhancement of a CO2 heat pump system recovering stack exhaust thermal energy in fuel cell vehicles. Int J Refrig. 2007;30:1215–26.

    Article  CAS  Google Scholar 

  65. Kim SC, Won JP, Park YS, Lim TW, Kim MS. Performance evaluation of a stack cooling system using CO2 air conditioning system in fuel cell vehicles. Int J Refrig. 2009;32:70–7.

    Article  CAS  Google Scholar 

  66. Kim SC, Won JP, Kim MS. Effects of operating parameters on the performance of a CO2 air conditioning system for vehicles. Appl Therm Eng. 2009;29:2408–16.

    Article  CAS  Google Scholar 

  67. Wang Y, Wang D, Yu B, Shi J, Chen J. Experimental and numerical investigation of a CO2 heat pump system for electrical vehicle with series gas cooler configuration. Int J Refrig. 2019;100:156–66.

    Article  CAS  Google Scholar 

  68. Yin X, Wang A, Fang J, Cao F, Wang X. Investigations on the dynamic characteristic and its influence factors of a transcritical CO2 automobile heat pump. Sci Technol Built Environ. 2021;27(5):533–43.

    Article  Google Scholar 

  69. Yin X, Wang A, Fang J, Cao F, Wang X. Coupled effect of operation conditions and refrigerant charge on the performance of a transcritical CO2 automotive air conditioning system. Int J Refrig. 2021;123:72–80.

    Article  CAS  Google Scholar 

  70. Junqi D, Yibiao W, Shiwei J, Xianhui Z, Linjie H. Experimental study of R744 heat pump system for electric vehicle application. Appl Therm Eng. 2021;183: 116191.

    Article  Google Scholar 

  71. Yibiao W, Junqi D, Shiwei J, Linjie H. Experimental comparison of R744 and R134a heat pump systems for electric vehicle application. Int J Refrig. 2021;121:10–22.

    Article  Google Scholar 

  72. Song X, Lu D, Lei Q, Wang D, Yu B, Shi J, Chen J. Energy and exergy analyses of a transcritical CO2 air conditioning system for an electric bus. Appl Therm Eng. 2021;190: 116819.

    Article  CAS  Google Scholar 

  73. Song Y, Wang H, Ma Y, Yin X, Cao F. Energetic, economic, environmental investigation of carbon dioxide as the refrigeration alternative in new energy bus/railway vehicles’ air conditioning systems. Appl Energy. 2022;305: 117830.

    Article  CAS  Google Scholar 

  74. Aprea C, Greco A, Maiorino A. An experimental evaluation of the greenhouse effect in the substitution of R134a with CO2. Energy. 2012;45:753–61.

    Article  CAS  Google Scholar 

  75. Wang D, Yu B, Shi J, Chen J. Experimental and theoretical study on the cooling performance of a CO2 mobile air conditioning system. Energies. 2018;11:1927.

    Article  Google Scholar 

  76. Zhiyi Y, Tianduo P, Xunmin O. Scenario analysis on CO2 equivalent emissions from alternative mobile air conditioning refrigerants in China. Energy Procedia. 2017;142:2617–23.

    Article  Google Scholar 

  77. Environmental Protection Agency (EPA). Protection of stratospheric ozone: change of listing status for certain substitutes under the significant new alternatives policy program; Final Rule. Federal Register, Rules and Regulations 2015; 80(138): July 20. https://www.govinfo.gov/content/pkg/FR-2021-05-06/pdf/2021-08968.pdf

  78. Zhao Y, Chen J, Xu B, He B. Performance of R-1234yf in mobile air conditioning system under different heat load conditions. Int J Air Cond Refrig. 2012;20(3):1250016.

    Article  Google Scholar 

  79. Zhao Y, Qi Z, Chen J, Xu B, He B. Experimental analysis of the low-GWP refrigerant R1234yf as a drop-in replacement for R134a in a typical mobile air conditioning system. Proc Mech Eng Part C J Mech Eng Sci. 2012;226(11):2713–25.

    Article  CAS  Google Scholar 

  80. Mathur GD. Experimental Investigation of AC system performance with HFO-1234yf as the working fluid. SAE technical paper 2010; 2010–01–1207

  81. Direk M, Tunckal C, Yuksel F. Comparative performance analysis of experimental frigorific air conditioning system using R-134a and HFO-1234yf as a refrigerant. Therm Sci. 2016;20(6):2065–72.

    Article  Google Scholar 

  82. Spatz M, Minor B. HFO-1234yf low GWP refrigerant: a global sustainable solution for mobile air conditioning. In: SAE 2008 alternate refrigerant systems symposium, Scottsdale, AZ, 10–12 June 2008

  83. Lee Y, Jung D. A brief performance comparison of R1234yf and R134a in a bench tester for automobile applications. Appl Therm Eng. 2012;35:240–2.

    Article  CAS  Google Scholar 

  84. Kumar GR. Sustainability of automobile air-conditioning system using refrigerant R1234yf instead of R134a. Int J Automot Eng. 2015;5(3):2000–5.

    Google Scholar 

  85. Gomaa A. Performance characteristics of automotive air conditioning system with refrigerant R134a and its alternatives. Int J Energy And Power Eng. 2015;4(3):168–77.

    Article  Google Scholar 

  86. Zilio C, Brown JS, Schiochet G, Cavallini A. The refrigerant R1234yf in air conditioning systems. Energy. 2011;36:6110–20.

    Article  CAS  Google Scholar 

  87. Qi Z. Performance improvement potentials of R1234yf mobile air conditioning system. Int J Refrig. 2015;58:35–40.

    Article  CAS  Google Scholar 

  88. Qi Z. Experimental study on evaporator performance in mobile air conditioning system using HFO-1234yf as working fluid. Appl Therm Eng. 2013;53:124–30.

    Article  CAS  Google Scholar 

  89. Mastrullo R, Mauro AW, Vellucci C. Refrigerant alternatives for high speed train A/C systems: energy savings and environmental emissions evaluation under variable ambient conditions. Energy Procedia. 2016;101:280–7.

    Article  CAS  Google Scholar 

  90. Zou H, Huang G, Shao S, Zhang X, Tian C, Zhang X. Experimental study on heating performance of an r1234yf heat international symposium on district heating. Energy Procedia. 2017;142:1015–21.

    Article  CAS  Google Scholar 

  91. Aral MC, Hosoz M, Suhermanto M. Empirical correlations for the performance of an automotive air conditioning system using R1234yf and R134a. J Therm Sci Technol. 2017;37(1):127–37.

    Google Scholar 

  92. Aral MC, Suhermanto M, Hosoz M. Performance evaluation of an automotive air conditioning and heat pump system using R1234yf and R134a. Sci Technol Built Environ. 2021;27(1):44–60.

    Article  Google Scholar 

  93. Navarro-Esbri J, Moles F, Barragan-Cervera A. Experimental analysis of the internal heat exchanger influence on a vapour compression system performance working with R1234yf as a drop-in replacement for R134a. Appl Therm Eng. 2013;59:153–61.

    Article  CAS  Google Scholar 

  94. Daviran S, Kasaeian A, Golzari S, Mahian O, Nasirivatan S, Wongwises S. A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems. Appl Therm Eng. 2017;110:1091–100.

    Article  CAS  Google Scholar 

  95. Rajendran P, Sidney S, Iyyappan R, Lal DM. Experimental studies on the performance of mobile air conditioning system using environmental friendly HFO-1234yf as a refrigerant. J Process Mech Eng. 2021;235(3):731–42.

    Article  CAS  Google Scholar 

  96. Sharif MZ, Azmi WH, Zawawi NNM, Mamat R, Hamisa AH. R1234yf vs R134a in automotive air conditioning system: a comparison of the performance. In IOP conf. series: materials science and engineering 2020; 863: 012049.

  97. Direk M, Yuksel F. Comparative experimental evaluation on heating performance of a mobile air conditioning system using R134a, R1234ze(E), R152a and R444A. J Therm Sci Technol. 2019;39:31–8.

    Google Scholar 

  98. Jankovic Z, Atienza JS, Suarez JAM. Thermodynamic and heat transfer analyses for R1234yf and R1234ze (E) as drop-in replacements for R134a in a small power refrigerating system. Appl Therm Eng. 2015;80:42–54.

    Article  CAS  Google Scholar 

  99. Karber KM, Abdelaziz O, Vineyard EA. Experimental performance of R-1234yf as a drop-in replacement for R-134a in domestic refrigerators international refrigeration and air-conditioning conference, Purdue 2012: 1228

  100. Mota-Babiloni A, Navarro-Esbri J, Barragan A, Moles F, Peris B. Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements. Appl Therm Eng. 2014;71:259–65.

    Article  CAS  Google Scholar 

  101. Motta SFY, Bercerra EDV, Spatz MW. Analysis of LGWP alternatives for small refrigeration (plugin) applications. In International refrigeration and air-conditioning conference, Purdue, 2010; 1149

  102. Pigani L, Boscolo M, Pagan N. Marine refrigeration plants for passenger ships: Low-GWP refrigerants and strategies to reduce environmental impact. Int J Refrig. 2016;64:80–92.

    Article  CAS  Google Scholar 

  103. Moles F, Navarro-Esbri J, Peris B, Mota-Babiloni A, Cervera AB. Theoretical energy performance evaluation of different single stage vapour compression refrigeration configurations using R1234yf andR1234ze(E) as working fluids. Int J Refrig. 2014;44:141–50.

    Article  CAS  Google Scholar 

  104. Fukuda S, Kondou C, Takata N, Koyama S. Low GWP refrigerants R1234ze (E) and R1234ze (Z) for high temperature heat pumps. Int J Refrig. 2013;40:161–73.

    Article  Google Scholar 

  105. Shin Y, Cho H. Performance comparison of a truck refrigeration system with R404A, R134a, R1234yf, and R744 refrigerants under frosting conditions. Int J Air Cond Refrig. 2016;24(1):1650005.

    Article  CAS  Google Scholar 

  106. Mota-Babiloni A, Navarro-Esbri J, Mendoza-Miranda JM, Peris B. Experimental evaluation of system modifications to increase R1234ze (E) cooling capacity. Appl Therm Eng. 2017;111:786–92.

    Article  CAS  Google Scholar 

  107. Direk M, Mert MS, Yuksel F, Kelesoglu A. Exergetic Investigation of a R1234yf automotive air conditioning system with internal heat exchanger. Int J Thermodyn. 2018;21(2):103–9.

    Article  CAS  Google Scholar 

  108. Li W, Liu R, Liu Y, Wang D, Shi J, Chen J. Performance evaluation of R1234yf heat pump system for an electric vehicle in cold climate. Int J Refrig. 2020;115:117–25.

    Article  CAS  Google Scholar 

  109. Alhendal Y, Gomaa A, Bedair G, Kalendar A. Thermal performance Analysis of Low-GWP refrigerants in automotive air-conditioning system. Adv Mater Sci Eng. 2020;7967812:1–14.

    Article  Google Scholar 

  110. Mohanraj M, Muraleedharan C, Jayaraj S. A review on recent developments in new refrigerant mixtures for vapour compression-based refrigeration, air-conditioning and heat pump units. Int J Energy Res. 2011;35(8):647–69.

    Article  CAS  Google Scholar 

  111. Jung D, Park B, Lee H. Evaluation of supplementary/retrofit refrigerants for automobile air-conditioners charged with CFC12. Int J Refrig. 1999;22:558–68.

    Article  CAS  Google Scholar 

  112. Ravikumar TS, Lal DM. On-road performance analysis of R134a/R600a/R290 refrigerant mixture in an automobile air conditioning system with mineral oil as lubricant. Energy Convers Manage. 2009;50:1891–901.

    Article  Google Scholar 

  113. Ravikumar TS, Lal DM. HFC/HC blend for car climate control with mineral oil as lubricant. Therm Sci. 2011;15:391–8.

    Article  Google Scholar 

  114. Meng Z, Zhang H, Lei M, Qin Y, Qiu J. Performance of low GWP R1234yf/R134a mixture as a replacement for R134a in automotive air conditioning systems. Int J Heat Mass Transf. 2018;116:362–70.

    Article  CAS  Google Scholar 

  115. Lee Y, Kang DG, Jung D. Performance of virtually non-flammable azeotropic HFO1234yf/HFC134a mixture for HFC134a applications. Int J Refrig. 2013;36:1203–7.

    Article  CAS  Google Scholar 

  116. Shin Y, Kim T, Lee A, Cho H. Performance characteristics of automobile air conditioning using the R134a/R1234yf mixture. Entropy. 2020;22(4):1096.

    Google Scholar 

  117. Prabakaran R, Somasundaram P, Sidney S, Sanjeev K, Mohamed F, Subathran VM. R1234yf/R134a based refrigerant mixture for automobile air conditioning systems: a thermodynamic approach. IOP Earth Environ Sci. 2021;2054:012064.

    Google Scholar 

  118. Kopecka M, Hegar M, Sulc V, Berge V. System drop-in tests of refrigerant blends N-13a and AC5 in bus air- conditioning unit designed for R-134a. air-conditioning, heating, and refrigeration institute (AHRI) Low-GWP Alternative Refrigerants Evaluation Program (Low-GWP AREP) 2013; Test report #12

  119. Schulze C, Raabe G, Tegethoff WJ, Koehler J. Transient evaluation of a city bus air conditioning system with R-445A as drop-in—from the molecules to the system. Int J Therm Sci. 2015;96:355–61.

    Article  CAS  Google Scholar 

  120. Miranda JM, Mota-Babiloni A, Ramirez-Minguela JJ, Munoz-Carpio VD, Carrera-Rodriguez M, Navarro-Esbri J, Salazar-Hernandez C. Comparative evaluation of R1234yf, R1234ze (E) and R450A as alternatives to R134a in a variable speed reciprocating compressor. Energy. 2016;114:753–66.

    Article  Google Scholar 

  121. Mota-Babiloni A, Makhnatch P, Khodabandeh R, Navarro-Esbri J. Experimental assessment of R134a and its lower GWP alternative R513A. Int J Refrig. 2017;74:682–8.

    Article  CAS  Google Scholar 

  122. Devecioglu AG, Oruc V. An analysis on the comparison of low-GWP refrigerants to alternatively use in mobile air-conditioning systems. Therm Sci Eng Progress. 2017;1:1–5.

    Article  Google Scholar 

  123. Raveendran PS, Sekhar SJ. Energy and exergy analysis on hydrofluoroolefin/hydrofluorocarbon (HFO/HFC) refrigerant mixtures in low and medium temperature small-scale refrigeration systems. Proc Inst Mech Eng Part E J Process Mech Eng. 2021;235(3):718–30.

    Article  CAS  Google Scholar 

  124. Padmavathy R, Chockalingam MP, Kamaraj N, Glivin G, Thangaraj V, Moorthy B. Performance studies of low GWP refrigerants as environmental alternatives for R134a in low-temperature applications. Environ Sci Pollut Res 2021. (In press)

  125. Huang L. Energy and exergy performance comparison of different HFC/R1234yf mixtures in vapor-compression cycles. J Therm Anal Calorim. 2020;140:2447–59.

    Article  CAS  Google Scholar 

  126. Mezentseva NN, Zakharov KP, Cherkasova AV. Non-azeotropic binary mixtures for heat pumps. AIP Conf Proc. 2020;2212: 020037.

    Article  CAS  Google Scholar 

  127. Meng Z, Zhang H, Qiu J, Lei M. Theoretical analysis of R1234ze (E), R152a, and R1234ze(E)/R152a mixtures as replacements of R134a in vapor compression system. Adv Mech Eng. 2016;8(11):1–10.

    Article  CAS  Google Scholar 

  128. Zhang Z, Dai Y, Feng L, Li B. Study on environmentally friendly refrigerant R13I1/R152a as an alternative for R134a in automotive air conditioning system. Chin J Chem Eng. 2022;44:299–299.

    Article  Google Scholar 

  129. Yu B, Wang D, Liu C, Jiang F, Shi J, Chen J. Performance improvements evaluation of an automobile air conditioning system using CO2-propane mixture as a refrigerant. Int J Refrig. 2018;88:172–81.

    Article  CAS  Google Scholar 

  130. Yu B, Yang J, Wang D, Shi J, Guo Z, Chen J. Experimental energetic analysis of CO2/R41 blends in automobile air conditioning and heat pump systems. Appl Energy. 2019;239:1142–53.

    Article  CAS  Google Scholar 

  131. Abbood MH, Hashim HT, Amin AS. Investigation of environmentally-friendly alternative refrigerants for automotive air conditioning systems. In IOP conf. series: materials science and engineering 2020; 671: 012139

  132. Abraham JD, Mohanraj M. Thermodynamic performance of automobile air conditioners working with R430A as a drop-in substitute to R134a. J Therm Anal Calorim. 2019;136:2071–86.

    Article  Google Scholar 

  133. Abraham JDAP, Mohanraj M, Selvakumar M, Raj AK. Experimental assessments on R430A as an environment-friendly replacement to R134a in vehicle air conditioners. J Braz Soc Mech Sci Eng. 2021;43:162.

    Article  CAS  Google Scholar 

  134. Ganeshkumar P, Vinothkumar S, Prabakaran R, Salman M, Kim SC. Selection of the best refrigerant for replacing R134a in automobile air conditioning system using different MCDM methods: acomparative study. Case Stud Therm Eng. 2021;27: 101344.

    Article  Google Scholar 

  135. Lee GH, Yoo JY. Performance analysis and simulation of automobile air conditioning system. Int J Refrig. 2000;23:243–54.

    Article  CAS  Google Scholar 

  136. Nelson SM, Hrnjak PS. Improved R134a mobile air conditioning system, ACRC CR-45, University of Illinois at Urbana-Champaign 2002.

  137. Wang S, Gu J, Dickson T, Dexter J, McGregor I. Vapor quality and performance of an automotive air conditioning system. Exp Thermal Fluid Sci. 2006;30:59–66.

    Article  Google Scholar 

  138. Qi Z, Zhao Y, Chen J. Performance enhancement study of mobile air conditioning system using microchannel heat exchangers. Int J Refrig. 2010;33:301–12.

    Article  CAS  Google Scholar 

  139. Desai AD, Sapali SN, Parthasarathi G. Experimental optimisation of charge level in an automotive air conditioning system under steady state conditions. SAE technical paper 2010; 2010–36–0018

  140. SAE J 2765. Procedure for measuring system COP (Coefficient of Performance) of a mobile air conditioning system on a test bench, 2008

  141. Cummings RW, Shah RK. Experimental performance evaluation of automotive air- conditioning heat exchangers as components and in vehicle systems. SAE Technical Paper 2005; 2005–01–2003

  142. Li K, Yu J, Liu M, Xu D, Su L, Fang Y. A study of optimal refrigerant charge amount determination for air-conditioning heat pump system in electric vehicles. Energies. 2020;13:657.

    Article  Google Scholar 

  143. Wang D, Zhang Z, Yu B, Wang X, Shi J, Chen J. Experimental research on charge determination and accumulator behavior in trans-critical COF121 mobile air-conditioning system. Energy. 2019;183:106–15.

    Article  CAS  Google Scholar 

  144. Feng L, Hrnjak P. Experimental study of an air conditioning-heat pump system for electric vehicles. SAE Technical Paper 2016; 2016–01–0257

  145. Prabakaran R, Lal DM. A novel exergy based charge optimisation for a mobile air conditioning system: an experimental study. J Therm Anal Calorim. 2018;132:1241–52.

    Article  CAS  Google Scholar 

  146. Kang L, Jiao L, Guoliang Z, Qitian T, Qia C, Yidong F, Lin S. Investigation on the influence of refrigerant charge amount on the cooling performance of air conditioning heat pump system for electric vehicles. J Therm Sci. 2019;28(2):294–305.

    Article  Google Scholar 

  147. Manstein AV, Limperich D, Banakar S. Simulative comparison of mobile air -conditioning concepts for mechanical and electrical driven systems. In Proceedings of the 12th international modelica conference, Prague, Czech Republic 2017; 783–790.

  148. Dahlan AA, Zulkifli AH, Nasution H, Aziz AA, Perang MRM, Jamil HM, Zulkifli AA. Efficient and green vehicle air conditioning system using electric compressor. Energy Procedia. 2014;61:270–3.

    Article  Google Scholar 

  149. Qi Z, Chen J, Chen Z, Hu W, He B. Experimental study of an auto-controlled automobile air conditioning system with an externally-controlled variable displacement compressor. Appl Therm Eng. 2007;27:927–33.

    Article  Google Scholar 

  150. Wang M, Zima M, Kadle P. Energy-efficient air conditioning systems utilizing pneumatic variable compressors. SAE Int J Passeng Cars Mech Syst. 2009;2(1):725–35.

    Article  Google Scholar 

  151. Zima M, Wang M, Kadle P, Bona J. Improving the fuel efficiency of mobile A/C systems with variable displacement compressors. SAE Technical Paper Series 2014; 2014–01–0700.

  152. Alkan A, Hosoz H. Comparative performance of an automotive air conditioning system using fixed and variable capacity compressors. Int J Refrig. 2010;33:487–95.

    Article  CAS  Google Scholar 

  153. Chen Y, Zou H, Dong J, Xu H, Tian C, Butrymowicz D. Experimental investigation on refrigeration performance of a CO2 system with intermediate cooling for automobiles. Appl Therm Eng. 2020;174: 115267.

    Article  CAS  Google Scholar 

  154. Lee T, Shin KH, Kim J, Jung D, Kim JH. Design optimization of external variable displacement compressor with R1234yf for vehicle air conditioning system. Appl Therm Eng. 2021;198: 117493.

    Article  CAS  Google Scholar 

  155. Kawamoto Y, Ogata G, Shan Z. Ejector Energy-Saving Technology for Mobile Air Conditioning Systems, SAE Int. J Passeng Cars - Mech Syst. 2017;10(1):102–10.

    Article  Google Scholar 

  156. Peng Q, Du Q. Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review. Energies. 2016;9(4):240.

    Article  Google Scholar 

  157. Kandlikar SG, Grande WJ. Evolution of microchannel flow passages: Thermohydraulic performance and fabrication technology. Heat Transfer Eng. 2003;24(1):3–17.

    Article  CAS  Google Scholar 

  158. Parise JAR, Marques RP. The role of heat transfer in refrigeration. Heat Transfer Eng. 2005;26(9):1–4.

    Article  CAS  Google Scholar 

  159. Kandlikar SG. A roadmap for implementing minichannels in refrigeration and air- conditioning systems—current status and future directions. Heat Transf Eng. 2007;28(12):973–85.

    Article  CAS  Google Scholar 

  160. Sanaye S, Dehghandokht M. Thermal modeling of mini-channel and laminated types evaporator in mobile air conditioning system. Int J Automot Eng. 2012;2(2):68–83.

    Google Scholar 

  161. Qi Z, Chen J, Radermacher R. Investigating performance of new mini-channel evaporators. Appl Therm Eng. 2009;29:3561–7.

    Article  CAS  Google Scholar 

  162. Prabakaran R, Lal DM, Prabhakaran A, Kumar JK. Experimental investigations on the performance enhancement using minichannel evaporator with integrated receiver-dryer condenser in an automotive air conditioning system. Heat Transfer Eng. 2019;40(8):667–78.

    Article  CAS  Google Scholar 

  163. Zheng W, Chen Y, Hua N, Zhong T, Gong Y. Comparative performance of an automotive air conditioning system using micro-channel condensers with and without liquid-vapor separation. Energy Procedia. 2014;61:1646–9.

    Article  Google Scholar 

  164. Li J, Feng L, Hrnjak P. Experimentally validated effects of separation of liquid and vapor on performance of condenser and system. SAE technical paper 2017; 2017–01–0162.

  165. Tuo H, Hrnjak P. Flash gas bypass in mobile air conditioning system with R134a. Int J Refrig. 2012;35:1869–77.

    Article  CAS  Google Scholar 

  166. Cho H, Lee H, Park C. Performance characteristics of an automobile air conditioning system with internal heat exchanger using refrigerant R1234yf. Appl Therm Eng. 2013;61:563–9.

    Article  CAS  Google Scholar 

  167. Pottker G, Hrnjak P. Effect of the condenser subcooling on the performance of vapor compression systems. Int J Refrig. 2015;50:156–64.

    Article  CAS  Google Scholar 

  168. Pottker G, Hrnjak P. Experimental investigation of the effect of condenser subcooling in R134a and R1234yf air conditioning systems with and without internal heat exchanger. Int J Refrig. 2015;50:104–13.

    Article  CAS  Google Scholar 

  169. Mathur GD. Enhancing AC system performance with a suction line heat exchanger with refrigerant HFO-1234yf. SAE technical paper 2011; 2011–01–0133

  170. Mota-Babiloni A, Navarro-Esbri J, Barragan-Cervera A, Moles F, Peris B. Drop-in analysis of an internal heat exchanger in a vapour compression system using R1234ze (E) and R450A as alternatives for R134a. Energy. 2015;90:1636–44.

    Article  CAS  Google Scholar 

  171. Battista D, Cipollone R. High efficiency air conditioning model based analysis for the automotive sector. Int J Refrig. 2016;64:108–22.

    Article  Google Scholar 

  172. Wu JH, Xie F, Liu CP, Ouyang G. Adaptability research on micro-channel heat exchanger applied to heat pump air conditioning system for electrical vehicle. J Mech Eng. 2012;48:141–7.

    Article  CAS  Google Scholar 

  173. Huang D, Liu XY, Wang YL. Effect of fin type on frosting characteristics of an air-source heat pump. Int J Refrig. 2012;33:12–7.

    Google Scholar 

  174. Raveendran PS, Sekhar SJ. Experimental studies on domestic refrigeration system with brazed plate heat exchanger as condenser. J Mech Sci Technol. 2016;30(6):2865–71.

    Article  Google Scholar 

  175. Raveendran PS, Sekhar SJ. Exergy analysis of a domestic refrigerator with brazed plate heat exchanger as condenser. J Therm Anal Calorim. 2017;127(3):2439–46.

    Article  CAS  Google Scholar 

  176. Raveendran PS, Sekhar SJ. Investigation on the energy and exergy efficiencies of a domestic refrigerator retrofitted with water-cooled condensers of shell-and-coil and brazed-plate heat exchangers. J Therm Anal Calorim. 2019;136(1):381–8.

    Article  CAS  Google Scholar 

  177. Wang D, Yu B, Hu J, Chen L, Shi J, Chen J. Heating performance characteristics of CO2 heat pump system for electrical vehicle in a cold climate. Int J Refrig. 2018;85:27–41.

    Article  CAS  Google Scholar 

  178. Banakar S, Limperich D, Asapu R, Panneerselvam V, Singh M. Performance evaluation of automotive HVAC system with the use of liquid cooled condenser. SAE technical paper 2014; 2014–01–0681

  179. Suh IS, Lee M, Kim J, Oh ST, Won JP. Design and experimental analysis of an efficient HVAC (heating, ventilation, air-conditioning) system on an electric bus with dynamic on-road wireless charging. Energy. 2015;81:262–73.

    Article  Google Scholar 

  180. Lee DY, Cho CW, Won JP, Park YC, Lee MY. Performance characteristics of mobile heat pump for a large passenger electric vehicle. Appl Therm Eng. 2013;50(1):660–9.

    Article  Google Scholar 

  181. Hou Y, Ma J, Liu C, Cao J, Liu X. Experimental investigation on the influence of EEV opening on the performance of transcritical CO2 refrigeration system. Appl Therm Eng. 2014;65:51–6.

    Article  CAS  Google Scholar 

  182. Junye S, Cichong L, Jichao H. Experimental research and optimization on the environmental friendly R1234yf refrigerant in automobile air conditioning system. J Shanghai Jiaotong Univ (Sci). 2016;21(5):548–56.

    Article  Google Scholar 

  183. Rajendran P, Narayanaswamy GR, Dhasan ML. Experimental studies on the performance of mobile air conditioning system using environmental friendly HFO-1234yf as a refrigerant. J Braz Soc Mech Sci Eng. 2019;41:191.

    Article  Google Scholar 

  184. Prabakaran R, Lal DM, Devotta S. Effect of thermostatic expansion valve tuning on the performance enhancement and environmental impact of a mobile air conditioning system. J Therm Anal Calorim. 2021;143:335–50.

    Article  CAS  Google Scholar 

  185. Patil MS, Kim SC, Seo JH, Lee MY. Review of the thermo-physical properties and performance characteristics of a refrigeration system using refrigerant-based nanofluids. Energies. 2016;9:22.

    Article  Google Scholar 

  186. Redhwan AAM, Azmi WH, Sharif MZ, Mamat R. Development of nanorefrigerants for various types of refrigerant based: a comprehensive review on performance. Int Commun Heat Mass Transfer. 2016;76:285–93.

    Article  CAS  Google Scholar 

  187. Kumar A, Gupta PR, Kumar TA, Said Z. Performance evaluation of small scale solar organic Rankine cycle using MWCNT + R141b nanorefrigerant. Energy Convers Manage. 2022;260: 115631.

    Article  CAS  Google Scholar 

  188. Sharif MN, Azmi WH, Redhwan AMM, Mamat R, Yusof TM. Performance analysis of SiO2/PAG nanolubricant in automotive air conditioning system. Int J Refrig. 2017;75:204–16.

    Article  CAS  Google Scholar 

  189. Redhwan AAM, Azmi WH, Sharif MN, Hagos FY. Development of nanolubricant automotive air conditioning (AAC) test rig. MATEC Web Conf. 2017;90:01050.

    Article  Google Scholar 

  190. Redhwan AAM, Azmi WH, Najafi G, Sharif MN, Zawawi NNM. Application of response surface methodology in optimization of automotive air-conditioning performance operating with SiO2/PAG nanolubricant. J Therm Anal Calorim. 2019;135:1269–83.

    Article  CAS  Google Scholar 

  191. Sharif MN, Azmi WH, Redhwan AAM, Mamat R, Najafi G. Energy saving in automotive air conditioning system performance using SiO2/PAG nanolubricants. J Therm Anal Calorim. 2019;135(2):1285–97.

    Article  CAS  Google Scholar 

  192. Subhedar DG, Patel JZ, Ramani BM. Experimental studies on vapour compression refrigeration system using Al2O3/mineral oil nano-lubricant. Aust J Mech Eng 2020; 1–6.

  193. Zawawi NNM, Azmi WH, Sharif MZ, Shaiful AIM. Composite nanolubricants in automotive air conditioning system: An investigation on its performance. In IOP conf. series: materials science and engineering 2019; 469: 012078

  194. Sivalingam V, Kumar PG, Prabakaran R, Sun J, Velraj R, Kim SC. An automotive radiator with multi-walled carbon-based nanofluids: a study on heat transfer optimization using MCDM techniques. Case Stud Therm Eng. 2022;29: 101724.

    Article  Google Scholar 

  195. Prabakaran R, Kumar JP, Lal DM, Selvam C, Harish S. Constrained melting of graphene-based phase change nanocomposites inside a sphere. J Therm Anal Calorim. 2020;139(2):941–52.

    Article  CAS  Google Scholar 

  196. Prabakaran R, Sidney S, Lal DM, Harish S, Kim SC. Experimental performance of a mobile air conditioning unit with small thermal energy storage for idle stop/start vehicles. J Therm Anal Calorim. 2022;147:5117–32.

    Article  CAS  Google Scholar 

  197. Ganeshkumar P, Sakthivadivel D, Prabakaran R, Vigneswaran S, Sakthipriya M, Thakur AK, Sathyamurthy R, Kim SC. Exploring the thermo-physical characteristic of novel multi-wall carbon nanotube—Therminol-55-based nanofluids for solar-thermal applications. Environ Sci Pollut Res. 2022;29:10717–28.

    Article  CAS  Google Scholar 

  198. Kumar PG, Prabakaran R, Sakthivadivel D, Somasundaram P, Vigneswaran VS, Kim SC. Ultrasonication time optimization for multi-walled carbon nanotube based Therminol-55 nanofluid: an experimental investigation. J Therm Anal Calorim. 2022: 1 – 8. (Article in Press)

  199. Peng H, Ding G, Hu H, Jiang W. Influence of carbon nanotubes on nucleate pool boiling heat transfer characteristics of refrigerant–oil mixture. Int J Therm Sci. 2010;49(12):2428–38.

    Article  CAS  Google Scholar 

  200. Pinni KS, Katarkar AS, Bhaumik S. A review on the heat transfer characteristics of nanomaterials suspended with refrigerants in refrigeration systems. Mater Today Proc. 2021;44:1331–5.

    Article  Google Scholar 

  201. Singh DK, Kumar S, Kumar S, Kumar R. Potential of MWCNT/R134a nanorefrigerant on performance and energy consumption of vapor compression cycle: a domestic application. J Braz Soc Mech Sci Eng. 2021;43:540.

    Article  CAS  Google Scholar 

  202. Yang L, Jiang W, Ji W, Mahian O, Bazri S, Sadri R, Badruddin IA, Wongwises S. A review of heating/cooling processes using nanomaterials suspended in refrigerants and lubricants. Int J Heat Mass Transf. 2020;153: 119611.

    Article  CAS  Google Scholar 

  203. Sharif MZ, Azmi WH, Zawawi NN, Ghazali MF. Comparative air conditioning performance using SiO2 and Al2O3 nanolubricants operating with Hydrofluoroolefin-1234yf refrigerant. Appl Therm Eng. 2022;205: 118053.

    Article  CAS  Google Scholar 

  204. Thakur AK, Ahmed MS, Park J, Prabakaran R, Sidney S, Sathyamurthy R, Kim SC, Periasamy S, Kim J, Hwang JY. A review on carbon nanomaterials for K-ion battery anode: progress and perspectives. Int J Energy Res. 2022;46(4):4033–70.

    Article  CAS  Google Scholar 

  205. Thakur AK, Ahmed MS, Oh G, Kang H, Jeong Y, Prabakaran R, Vikram MP, Sharshir SW, Kim J, Hwang JY. Advancement in graphene-based nanocomposites as high capacity anode materials for sodium-ion batteries. J Mater Chem A. 2021;9(5):2628–61.

    Article  CAS  Google Scholar 

  206. Thakur AK, Prabakaran R, Elkadeem MR, Sharshir SW, Arıcı M, Wang C, Zhao W, Hwang JY, Saidur R. A state of art review and future viewpoint on advance cooling techniques for Lithium–ion battery system of electric vehicles. J Energy Storage. 2020;32: 101771.

    Article  Google Scholar 

  207. Yadav S, Liu J, Kim SC. A comprehensive study on 21st-century refrigerants-R290 and R1234yf: a review. Int J Heat Mass Transf. 2022;182: 121947.

    Article  CAS  Google Scholar 

  208. Yu B, Ouyang H, Shi J, Guo Z, Chen J. Experimental evaluation of cycle performance for new-developed refrigerants in the electric vehicle heat pump systems. Int J Refrig. 2021;129:118–27.

    Article  CAS  Google Scholar 

  209. Direk M, Yüksel F. Experimental evaluation of an automotive heat pump system with R1234yf as an alternative to R134a. Arab J Sci Eng. 2020;45(2):719–28.

    Article  CAS  Google Scholar 

  210. Na SI, Chung Y, Kim MS. Performance analysis of an electric vehicle heat pump system with a desiccant dehumidifier. Energy Convers Manage. 2021;236: 114083.

    Article  Google Scholar 

  211. Zhong Q, Huang Y, Zhao H, Wang X, Zhang Y, Shen J. Experimental study on the influence of trifluoroiodomethane on the flammability of difluoromethane and propane. Int J Refrig. 2022;135:14–9.

    Article  CAS  Google Scholar 

  212. Choi TJ, Kim DJ, Jang SP, Park S, Ko S. Effect of polyolester oil-based multiwalled carbon-nanotube nanolubricant on the coefficient of performance of refrigeration systems. Appl Therm Eng. 2021;192: 116941.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R. Prabakaran and D. M. Lal acknowledge the Center for Research at Anna University for providing an Anna Centenary Research Fellowship (No. CFR/ACRF/2015/4, dated January 15, 2015) to allow doctoral-level research to be conducted. R. Prabakaran and S. C. Kim thank the Korea Evaluation Institute of Industrial Technology (Keit) Grant funded by the Ministry of Trade, Industry and Energy (No. 20011653) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

RP, DML, and SCK contributed equally to manuscript preparation, conceptualization, methodology, resources, formal analysis, writing—original draft preparation, review, editing, and investigation; DML—supervision. All the authors participated in the conception and design or analysis and interpretation of the data and drafting the article and revising it critically for important intellectual content. All the authors read and approved the final version.

Corresponding authors

Correspondence to Dhasan Mohan Lal or Sung Chul Kim.

Ethics declarations

Conflict of interest

This manuscript has not been submitted to or is not under review by another journal or other publishing venues. The authors declare no potential conflicts of interest, with respect to the research, authorship, and/or publication of this article.. The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabakaran, R., Lal, D.M. & Kim, S.C. A state of art review on future low global warming potential refrigerants and performance augmentation methods for vapour compression based mobile air conditioning system. J Therm Anal Calorim 148, 417–449 (2023). https://doi.org/10.1007/s10973-022-11485-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11485-3

Keywords

Navigation