Skip to main content
Log in

Energy and exergy performance comparison of different HFC/R1234yf mixtures in vapor-compression cycles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To increase the COP and volumetric capacity of hydrofluoroolefins while reducing the global warming potential (GWP) of hydrofluorocarbons (HFCs), four HFC/R1234yf mixtures with various compositions are compared with verified thermodynamic models. Results show that a lower R1234yf mass fraction leads to a higher mixture latent heat; R32/R1234yf has the highest pressures, the lowest pressure ratios and the biggest temperature glides. As the R1234yf mass fraction increases from 0.0 to 1.0, the cooling coefficient of performance (COP) first increases from 5.25 to 5.52 and later decreases to 5.30 for R32/R1234yf, while it decreases from 5.46, 5.63 and 5.30 to 5.29 for R134a/R1234yf, R152a/R1234yf and R161/R1234yf. The heating COP first increases from 3.90 to 4.00 and later decreases to 3.79 for R32/R1234yf, while it decreases from 3.84, 3.95 and 4.02–3.79 for others. Caused by different volumetric capacities, R32/R1234yf requires a compressor enlarged by 2.8 times, R134a/R1234yf and R152a/R1234yf requires little change on compressor size, while R161/R1234yf requires a compressor enlarged by 1.5 times. R32/R1234yf yields the highest discharge temperature, while R134a/R1234yf yields the lowest. R32/R1234yf shows the highest exergy COPs (ECOPs) when the R1234yf mass fraction is above 60% in cooling mode and 46% in heating mode. Otherwise, R152a/R1234yf performs the best in cooling model and R161/R1234yf performs the best in heating mode. Considering both GWP and efficiency, the optimal composition is 20/80% for R32/R1234yf, 10/90% for R134a/R1234yf and 100/0% for both R152a/R1234yf and R161/R1234yf. This study provides suggestions for the determination of optimal compositions of different HFC/R1234yf mixture refrigerants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

H :

Specific enthalpy, kJ kg−1

\(\dot{m}\) :

Mass flow rate, kg s−1

p c :

Condensing pressure, kPa

p e :

Evaporating pressure, kPa

Q c :

Heating capacity of condenser, kW

Q e :

Cooling capacity of evaporator, kW

q c :

Cooling volumetric capacity, MJ m−3

q h :

Heating volumetric capacity, MJ m−3

T c :

Condensing temperature, °C

T e :

Evaporating temperature, °C

T 0 :

Reference temperature, °C

\(\dot{V}\) :

Volumetric flow rate, m3 s−1

W p :

Power of compressor, kW

x :

Mass fraction

η i :

Isentropic efficiency

ρ :

Density, kg m−3

ΔHlv :

Latent heat, kJ kg−1

COP:

Coefficient of performance

ECOP:

Exergy coefficient of performance

GWP:

Global warming potential

HCFC:

Hydrochlorofluorocarbons

HFC:

Hydrofluorocarbon

HFO:

Hydrofluoroolefin

ODP:

Ozone depletion potential

p–h:

Pressure–enthalpy

R22:

Chlorodifluoromethane

R32:

Difluoromethane

R125:

Pentafluoroethane

R134a:

1,1,1,2-Tetrafluoroethane

R152a:

1,1-Difluoroethane

R161:

Fluoroethane

R410A:

Mixture of difluoromethane and pentafluoroethane

R1234yf:

2,3,3,3-Tetrafluoropropene

R1234ze(E):

Trans-1,3,3,3-tetrafluoropropene

T-s:

Temperature–entropy

VLE:

Vapor–liquid equilibrium

References

  1. UNEP. Amendment to the Montreal protocol on substances that deplete the ozone layer, Kigali, 15 October 2016. https://treaties.un.org/doc/Publication/CN/2016/CN.872.2016-Eng.pdf.

  2. Brown JS. HFOs: new, low global warming potential refrigerants. ASHRAE J. 2009;51(8):22.

    Google Scholar 

  3. Gong MQ, Zhang HY, Li HY, Zhong Q, Dong XQ, Shen J, Wu JF. Vapor pressures and saturated liquid densities of HFO1234ze (E) at temperatures from 253.343 to 293.318 K. Int J Refrig. 2016;64:168–75.

    Article  CAS  Google Scholar 

  4. Kamiaka T, Dang C, Hihara E. Vapor–liquid equilibrium measurements for binary mixtures of R1234yf with R32, R125, and R134a. Int J Refrig. 2013;36(3):965–71.

    Article  CAS  Google Scholar 

  5. Yang Z, Gong M, Guo H, Dong X, Wu J. Phase equilibrium for the binary mixture of 1,1-difluoroethane (R152a) + trans-1,3,3,3-tetrafluoropropene (R1234ze (E)) at various temperatures from 258.150 to 288.150 K. Fluid Phase Equilib. 2013;355:99–103.

    Article  CAS  Google Scholar 

  6. Dong X, Guo H, Gong M, Yang Z, Wu J. Measurements of isothermal (vapour + liquid) equilibria data for 1,1,2,2-tetrafluoroethane (R134) + trans-1,3,3,3-tetrafluoropropene (R1234ze (E)) at T = (258.150 to 288.150) K. J Chem Thermodyn. 2013;60:25–8.

    Article  CAS  Google Scholar 

  7. Dang Y, Kim HS, Dang C, Hihara E. Measurement of vapor viscosity of R1234yf and its binary mixtures with R32, R125. Int J Refrig. 2015;58:131–6.

    Article  CAS  Google Scholar 

  8. Cui J, Bi S, Meng X, Wu J. Surface tension and liquid viscosity of R32 + R1234yf and R32 + R1234ze. J Chem Eng Data. 2016;61(2):950–7.

    Article  CAS  Google Scholar 

  9. Li M, Dang C, Hihara E. Flow boiling heat transfer of HFO1234yf and R32 refrigerant mixtures in a smooth horizontal tube: part I. Experimental investigation. Int J Heat Mass Transf. 2012;55(13–14):3437–46.

    Article  CAS  Google Scholar 

  10. Li M, Dang C, Hihara E. Flow boiling heat transfer of HFO1234yf and HFC32 refrigerant mixtures in a smooth horizontal tube: part II. Prediction method. Int J Heat Mass Transf. 2013;64:591–608.

    Article  CAS  Google Scholar 

  11. Wang L, Dang C, Hihara E. Experimental and theoretical study on condensation heat transfer of nonazeotropic refrigerant mixtures R1234yf/R32 inside a horizontal smooth tube. In: International refrigeration and air conditioning conference at Purdue. 2012.

  12. Hossain MA, Onaka Y, Afroz HM, Miyara A. Heat transfer during evaporation of R1234ze (E), R32, R410A and a mixture of R1234ze (E) and R32 inside a horizontal smooth tube. Int J Refrig. 2013;36(2):465–77.

    Article  Google Scholar 

  13. Del Col D, Azzolin M, Bortolin S, Zilio C. Two-phase pressure drop and condensation heat transfer of R32/R1234ze (E) non-azeotropic mixtures inside a single microchannel. Sci Technol Built Environ. 2015;21(5):595–606.

    Article  Google Scholar 

  14. Yamada Y, Tsuchiya T, Shibanuma T. Environmentally friendly non-flammable refrigerants. In: 2010 International symposium on next-generation air conditioning and refrigeration technology, Tokyo, Japan, GS07 1–7. 2010.

  15. Okazaki T, Maeyama H, Saito M, Yamamoto T. Performance and reliability evaluation of a room air conditioner with low GWP refrigerant. In: 2010 International symposium on next-generation air conditioning and refrigeration technology, Tokyo, Japan. 2010.

  16. Zheng N, Hwang Y, Zhao L. Thermodynamic performance assessment of R32 and R1234yf mixtures as alternatives of R410A. In: 12th IEA heat pump conference 2017. 2017.

  17. Xu S, Fan X, Ma G. Experimental investigation on heating performance of gas-injected scroll compressor using R32, R1234yf and their 20wt%/80wt% mixture under low ambient temperature. Int J Refrig. 2017;75:286–92.

    Article  CAS  Google Scholar 

  18. Koyama S, Takada N, Matsuo Y, Yoshitake D, Fukuda S. Possibility to introduce HFO-1234ze (E) and its mixture with HFC-32 as low-GWP alternatives for heat pump/refrigeration systems. In: International symposium on next-generation air conditioning and refrigeration technology, Tokyo, Japan. 2010.

  19. Tanaka K, Higashii Y, Akasaka R. Thermodynamic property modeling of HFO-1234ze (E) + HFC-32 mixtures for evaluating cycle performance. In: Proceedings of the 23rd international congress of refrigeration, 21–26 Aug, Prague, Czech Republic. 2011.

  20. Cheng Z, Wang B, Shi W, Li X. Numerical research on R32/R1234ze (E) air source heat pump under variable mass concentration. Int J Refrig. 2017;82:1–10.

    Article  CAS  Google Scholar 

  21. In S, Cho K, Lim B, Kim H, Youn B. Performance test of residential heat pump after partial optimization using low GWP refrigerants. Appl Therm Eng. 2014;72(2):315–22.

    Article  CAS  Google Scholar 

  22. Mota-Babiloni A, Navarro-Esbrí J, Barragán-Cervera Á, Molés F, Peris B. Experimental study of an R1234ze (E)/R134a mixture (R450A) as R134a replacement. Int J Refrig. 2015;51:52–8.

    Article  CAS  Google Scholar 

  23. Lemmon EW, Huber ML, McLinden MO. NIST reference fluid thermodynamic and transport properties—REFPROP. NIST standard reference database, 23, v9.1. 2013

  24. ASHRAE. ANSI/ASHRAE Standard 34-2016, designation and safety classification of refrigerants. ASHRAE, Atlanta. 2016.

  25. Mohanraj M, Jayaraj S, Muraleedharan C. Environment friendly alternatives to halogenated refrigerants—a review. Int J Greenh Gas Control. 2009;3(1):108–19.

    Article  CAS  Google Scholar 

  26. d’Angelo JVH, Aute V, Radermacher R. Performance evaluation of a vapor injection refrigeration system using mixture refrigerant R290/R600a. Int J Refrig. 2016;65:194–208.

    Article  Google Scholar 

  27. AHRI. Participants’ handbook: AHRI low-GWP alternative refrigerants evaluation program (low-GWP AREP). Air-Conditioning, Heating, and Refrigeration Institute. 2015.

  28. Brown JS, Yana-Motta SF, Domanski PA. Comparitive analysis of an automotive air conditioning systems operating with CO2 and R134a. Int J Refrig. 2002;25(1):19–32.

    Article  Google Scholar 

  29. Sánchez D, Cabello R, Llopis R, Arauzo I, Catalán-Gil J, Torrella E. Energy performance evaluation of R1234yf, R1234ze (E), R600a, R290 and R152a as low-GWP R134a alternatives. Int J Refrig. 2017;74:269–82.

    Article  Google Scholar 

Download references

Acknowledgements

The supports from “Shanghai key laboratory of multiphase flow and heat transfer for power engineering” (13DZ2260900), PhD Start-up Funding (1D-16-301-007) and Shanghai Municipal Education Commission Funding (10-17-301-803) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihao Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L. Energy and exergy performance comparison of different HFC/R1234yf mixtures in vapor-compression cycles. J Therm Anal Calorim 140, 2447–2459 (2020). https://doi.org/10.1007/s10973-019-08909-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08909-y

Keywords

Navigation